6.已知. 查看更多

 

題目列表(包括答案和解析)

5、已知α,β表示兩個(gè)不同的平面,m為平面α內(nèi)的一條直線,則“α⊥β”是“m⊥β”的(  )

查看答案和解析>>

精英家教網(wǎng)已知,如圖:四邊形ABCD為矩形,PA⊥平面ABCD,M、N分別是AB、PC的中點(diǎn),
(1)求證:直線MN⊥直線AB;
(2)若平面PDC與平面ABCD所成的二面角大小為θ,能否確定θ使直線MN是異面直線AB與PC的公垂線,若能確定,求出θ的值,若不能確定,說明理由.

查看答案和解析>>

已知α,β均為銳角,且α+β=
π4
,則(1+tanα)(1+tanβ)=
 

查看答案和解析>>

已知,橢圓C過點(diǎn)A(1,
32
)
,兩個(gè)焦點(diǎn)為(-1,0),(1,0).
(1)求橢圓C的方程;
(2)E,F(xiàn)是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個(gè)定值.

查看答案和解析>>

已知α,β,γ成公比為2的等比數(shù)列(α∈[0,2π]),且sinα,sinβ,sinγ也成等比數(shù)列.求α,β,γ的值.

查看答案和解析>>

 

一、選擇題

ACADB   BBCAB

二、填空題

11.1   12.-6   13.0   14.4    15.450  16.31030

 

三、解答題:

17.(1)恰有3個(gè)紅球的概率為                                     …………5分

   (2)停止摸球時(shí),已知摸到紅球次數(shù)為三次記為事件B

則事件B發(fā)生所摸球的次數(shù)為3次 4次或5次                       …………8分

所以              …………12分

 

18.解:設(shè)           …………2分

    即

                                              …………4分

   (1)當(dāng)時(shí)

                                                                 …………8分

   (2)當(dāng)上是增函數(shù),

    所以

    故                                           …………12分

 

19.解:(I)依題意

   

                                       …………3分

    故上是減函數(shù)

   

    即                                                            ……………6分

   (II)由(I)知上的減函數(shù),

    又

                                                                    …………9分

    故

    因此,存在實(shí)數(shù)m,使得命p且q為真命題,且m的取值范圍為

                                                                    …………12分

 

20.解:(1),                                           …………2分

    由題知:;                  …………6分

   (2)由(1)知:,                            …………8分

    恒成立,

    所以:                                 …………12分

 

21.解:(1)上,

    ,                                                                 …………1分

    為首項(xiàng),公差為1的等差數(shù)列,

                                 …………4分

    當(dāng)

                                                                    …………6分

    證明:(II)

    ,…………8分

    ,

    …………14分

 

22.解:(I)函數(shù)內(nèi)是奇函數(shù)等價(jià)于

    對(duì)任意                                …………2分

   

    即,…………4分

    因?yàn)?sub>,

    即,                                                                    …………6分

    此式對(duì)任意

    所以得b的取值范圍是                                                 …………8分

   (II)設(shè)任意的,

    得,                                            …………10分

    所以,                   …………12分

    從而,

    因此內(nèi)是減函數(shù),具有單調(diào)性。                      …………14分

 

 


同步練習(xí)冊(cè)答案