當(dāng)時(shí)仍滿足.此時(shí).解得 查看更多

 

題目列表(包括答案和解析)

設(shè)A是如下形式的2行3列的數(shù)表,

a

b

c

d

e

f

滿足性質(zhì)P:a,b,c,d,e,f,且a+b+c+d+e+f=0

為A的第i行各數(shù)之和(i=1,2), 為A的第j列各數(shù)之和(j=1,2,3)記中的最小值。

(1)對如下表A,求的值

1

1

-0.8

0.1

-0.3

-1

(2)設(shè)數(shù)表A形如

1

1

-1-2d

d

d

-1

其中,求的最大值

(3)對所有滿足性質(zhì)P的2行3列的數(shù)表A,求的最大值。

【解析】(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821120141938091/SYS201207182112449975134492_ST.files/image007.png">,,所以

(2),

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821120141938091/SYS201207182112449975134492_ST.files/image006.png">,所以,

所以

當(dāng)d=0時(shí),取得最大值1

(3)任給滿足性質(zhì)P的數(shù)表A(如圖所示)

a

b

c

d

e

f

任意改變A的行次序或列次序,或把A中的每個(gè)數(shù)換成它的相反數(shù),所得數(shù)表仍滿足性質(zhì)P,并且,因此,不妨設(shè),

得定義知,,,

從而

     

所以,,由(2)知,存在滿足性質(zhì)P的數(shù)表A使,故的最大值為1

【考點(diǎn)定位】此題作為壓軸題難度較大,考查學(xué)生分析問題解決問題的能力,考查學(xué)生嚴(yán)謹(jǐn)?shù)倪壿嬎季S能力

 

查看答案和解析>>

材料:采訪零向量

  W:你好!零向量.我是《數(shù)學(xué)天地》的一名記者,為了讓在校的高中生更好了解你,能不能對你進(jìn)行一次采訪呢?

  零向量:當(dāng)然可以,我們向量王國隨時(shí)恭候大家的光臨,很樂意接受你的采訪,讓高中生朋友更加了解我,更好地為他們服務(wù).

  W:好的,那就開始吧!你的名字有什么特殊的含義嗎?

  零向量:零向量就是長度為零的向量,它與數(shù)字0有著密切的聯(lián)系,所以用0來表示我.

  W:你與其他向量有什么共同之處呢?

  零向量:既然我是向量王國的一個(gè)成員,就具有向量的基本性質(zhì),如既有大小又有方向,在進(jìn)行加、減法運(yùn)算時(shí)滿足交換律和結(jié)合律,還定義了與實(shí)數(shù)的積.

  W:你有哪些值得驕傲的特殊榮耀呢?

  零向量:首先,我的方向是不定的,可以與任意的向量平行.其次,我還有其他一些向量所沒有的特殊待遇:如我的相反向量仍是零向量;在向量的線性運(yùn)算中,我與實(shí)數(shù)0很有相似之處.

  W:你有如此多的榮耀,那么是否還有煩惱之事呢?

  零向量:當(dāng)然有了,在向量王國還有許多“權(quán)利和義務(wù)”卻大有把我排斥在外之意,如平行向量的定義,向量共線定理,兩向量夾角的定義都對我進(jìn)行了限制.所有這些確實(shí)給一些高中生帶來了很多苦惱,在此我向大家真誠地說一聲:對不起,這不是我的錯(cuò).但我還是很高興有這次機(jī)會與大家見面.

  W:OK!采訪就到這里吧,非常感謝你的合作,再見!

  零向量:Bye!

閱讀上面的材料回答下面問題.

應(yīng)用零向量時(shí)應(yīng)注意哪些問題?

查看答案和解析>>


同步練習(xí)冊答案