B. 查看更多

 

題目列表(包括答案和解析)

B.已知矩陣M=
12
2x
的一個特征值為3,求另一個特征值及其對應(yīng)的一個特征向量.
C.在極坐標系中,圓C的方程為ρ=2
2
sin(θ+
π
4
)
,以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=t
y=1+2t
(t為參數(shù)),判斷直線l和圓C的位置關(guān)系.

查看答案和解析>>

B.選修4-2:矩陣與變換
設(shè)a>0,b>0,若矩陣A=
.
a0
0b
.
把圓C:x2+y2=1變換為橢圓E:
x2
4
+
y2
3
=1.
(1)求a,b的值;
(2)求矩陣A的逆矩陣A-1
C.選修4-4:坐標系與參數(shù)方程在極坐標系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-
π
6
)=a截得的弦長為2
3
,求實數(shù)a的值.

查看答案和解析>>

B.(不等式選做題)若關(guān)于x的方程x2+x+|a-
14
|+|a|=0(a∈R)
有實根,則a的取值范圍是
 

查看答案和解析>>

B.選修4-2:矩陣與變換

試求曲線在矩陣MN變換下的函數(shù)解析式,其中M =,N =

查看答案和解析>>

B.選修4-2:矩陣與變換
已知矩陣A,其中,若點在矩陣A的變換下得到
(1)求實數(shù)的值;
(2)矩陣A的特征值和特征向量.

查看答案和解析>>

 

一、選擇題:本大題共12小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的.

1.  A      2. B       3. C       4. A         5.B

6.  D      7. A       8. C       9. D         10.C

 

二、填空題:本大題共4小題,每小題4分,共16分.

11.       12.   13.24     14.

15.168              16.①②③      17.1:(-6):5:(-8)

 

三、解答題:本大題共6小題,共74分.

18.解:(Ⅰ)由

                                         ---------4分

,得

,即為鈍角,故為銳角,且

.                                     ---------8分

(Ⅱ)設(shè)

由余弦定理得

解得

.                        ---------14分

19.解:(1)      --------4分

(2)x可能取的所有值有2,3,4                           --------5分

      

                    --------8分

∴x的分布列為:

∴Ex=                    --------10分

(3)當時,取出的3張卡片上的數(shù)字為1,2,2或1,2,3

當取出的卡片上的數(shù)字為1,2,2或1,2,3的概率為,

                            --------14分

 

20.解:(Ⅰ)EF⊥DN,EF⊥BN,

∴EF⊥平面BDN,

∴平面BDN⊥平面BCEF,

又因為BN為平面BDN與平面BCEF的交線,

∴D在平面BCEF上的射影在直線BN上

而D在平面BCEF上的射影在BC上,

∴D在平面BCEF上的射影即為點B,即BD⊥平面BCEF.   --------4分

(Ⅱ)法一.如圖,建立空間直角坐標系,

∵在原圖中AB=6,∠DAB=60°,

則BN=,DN=,∴折后圖中BD=3,BC=3

,

 

∴折后直線DN與直線BF所成角的余弦值為.     --------9分

法二.在線段BC上取點M,使BM=FN,則MN//BF

∴∠DNM或其補角為DN與BF所成角。

又MN=BF=2,    DM=,。

∴折后直線DN與直線BF所成角的余弦值為。

(Ⅲ)∵AD//EF,

∴A到平面BNF的距離等于D到平面BNF的距離,

即所求三棱錐的體積為.               --------14分

21.解:(Ⅰ)(?)由已知可得,

則所求橢圓方程.          --------3分

(?)由已知可得動圓圓心軌跡為拋物線,且拋物線的焦點為,準線方程為,則動圓圓心軌跡方程為.     --------6分

 (Ⅱ)當直線MN的斜率不存在時,|MN|=4,

此時PQ的長即為橢圓長軸長,|PQ|=4,

從而.            --------8分

設(shè)直線的斜率為,則,直線的方程為:

直線PQ的方程為,

設(shè)

,消去可得

由拋物線定義可知:

 ----10分

,消去,

從而,             --------12分

∵k>0,則

所以                       --------14分

所以四邊形面積的最小值為8.                    --------15分

22.解:(Ⅰ)

的極值點,∴

.

又當時,,從而的極值點成立。

                                                  --------4分

(Ⅱ)因為上為增函數(shù),

所以上恒成立.    --------6分

,則

上為增函數(shù)不成立;

,由恒成立知

所以上恒成立。

,其對稱軸為,

因為,所以,從而上為增函數(shù)。

所以只要即可,即

所以

又因為,所以.                    --------10分

(Ⅲ)若時,方程

可得

上有解

即求函數(shù)的值域.

法一:

∴當時,,從而在(0,1)上為增函數(shù);

時,,從而在(1,+∞)上為減函數(shù)。

,而可以無窮小。

的取值范圍為.                               --------15分

法二:

時,,所以上遞增;

時,,所以上遞減;

,∴令,.

∴當時,,所以上遞減;

時,,所以上遞增;

時,,所以上遞減;

又當時,,

時, ,則,且

所以的取值范圍為.                              --------15

 


同步練習(xí)冊答案