查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知函數(shù)。

(1)證明:

(2)若數(shù)列的通項(xiàng)公式為,求數(shù)列 的前項(xiàng)和;w.w.w.k.s.5.u.c.o.m    

(3)設(shè)數(shù)列滿足:,設(shè),

若(2)中的滿足對(duì)任意不小于2的正整數(shù),恒成立,

試求的最大值。

查看答案和解析>>

(本小題滿分14分)已知,點(diǎn)軸上,點(diǎn)軸的正半軸,點(diǎn)在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)當(dāng)點(diǎn)軸上移動(dòng)時(shí),求動(dòng)點(diǎn)的軌跡方程;

(Ⅱ)過(guò)的直線與軌跡交于、兩點(diǎn),又過(guò)、作軌跡的切線,當(dāng),求直線的方程.

查看答案和解析>>

(本小題滿分14分)設(shè)函數(shù)

 (1)求函數(shù)的單調(diào)區(qū)間;

 (2)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

 (3)若關(guān)于的方程在區(qū)間上恰好有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

(本小題滿分14分)

已知,其中是自然常數(shù),

(1)討論時(shí), 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

(2)求證:在(1)的條件下,;

(3)是否存在實(shí)數(shù),使的最小值是3,若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

(本小題滿分14分)

設(shè)數(shù)列的前項(xiàng)和為,對(duì)任意的正整數(shù),都有成立,記。

(I)求數(shù)列的通項(xiàng)公式;

(II)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對(duì)任意正整數(shù)都有;

(III)設(shè)數(shù)列的前項(xiàng)和為。已知正實(shí)數(shù)滿足:對(duì)任意正整數(shù)恒成立,求的最小值。

查看答案和解析>>

一、選擇題:(8,每小題5,滿分40)

題號(hào)

1

2

3

4

5

6

7

8

答案

A

C

D

C

A

D

B

B

二、填空題:(每題5分,共30分)

9. 8                10. 60             11. 8            12.

13. 10或0(答對(duì)一個(gè)給3分)        14.          15.

三、解答題(本大題共6小題,共80分)

16.(本題滿分12分)

解:(Ⅰ) =……1分

=……2分

……4分

 

……6分

……7分

.……8分

(Ⅱ)在中,, ,

……9分

由正弦定理知:……10分

=.

……12分

 

17. 本題滿分12分

 解:(Ⅰ)由 是方程的兩根,注意到.……2分

.

等比數(shù)列.的公比為,……4分

(Ⅱ)……5分

……7分

數(shù)列是首項(xiàng)為3,公差為1的等差數(shù)列. ……8分

(Ⅲ) 由(Ⅱ)知數(shù)列是首項(xiàng)為3,公差為1的等差數(shù)列,有

……=……

=……10分

,整理得,解得.……11分

的最大值是7. ……12分

 

18. 本題滿分14分

解: (Ⅰ)從2種服裝商品,2種家電商品,3種日用商品中,選出3種商品一共有種選法,.選出的3種商品中沒(méi)有日用商品的選法有種, 所以選出的3種商品中至少有一種日用商品的概率為.……4分

(Ⅱ)顧客在三次抽獎(jiǎng)中所獲得的獎(jiǎng)金總額是一隨機(jī)變量,設(shè)為X,其所有可能值為0, ,2,3.……6分

X=0時(shí)表示顧客在三次抽獎(jiǎng)中都沒(méi)有獲獎(jiǎng),所以……7分

 

同理可得……8分

……9分

……10分

于是顧客在三次抽獎(jiǎng)中所獲得的獎(jiǎng)金總額的期望值是.……12分

要使促銷方案對(duì)商場(chǎng)有利,應(yīng)使顧客獲獎(jiǎng)獎(jiǎng)金總額的期望值不大于商場(chǎng)的提價(jià)數(shù)額,因此應(yīng)有,所以, …… 13分

故商場(chǎng)應(yīng)將中獎(jiǎng)獎(jiǎng)金數(shù)額最高定為100元,才能使促銷方案對(duì)商場(chǎng)有利. …… 14分

 

19.本題滿分14分

.解:(Ⅰ) 證明:方法一)連AC,BD交于O點(diǎn),連GO,FO,EO.

∵E,F分別為PC,PD的中點(diǎn),∴//,同理//, //    

四邊形EFOG是平行四邊形, 平面EFOG. ……3分

又在三角形PAC中,E,O分別為PC,AC的中點(diǎn),PA//EO……4分

平面EFOG,PA平面EFOG, ……5分

PA//平面EFOG,即PA//平面EFG. ……6分

方法二) 連AC,BD交于O點(diǎn),連GO,FO,EO.

∵E,F分別為PC,PD的中點(diǎn),∴//,同理//

//AB,//

平面EFG//平面PAB, ……4分

又PA平面PAB,平面EFG. ……6分

方法三)如圖以D為原點(diǎn),以

為方向向量建立空間直角坐標(biāo)系.

則有關(guān)點(diǎn)及向量的坐標(biāo)為:

……2分

設(shè)平面EFG的法向量為

.……4分

,……5分

平面EFG.

 AP//平面EFG. ……6分

(Ⅱ)由已知底面ABCD是正方形

,又∵面ABCD

平面PCD,向量是平面PCD的一個(gè)法向量, =……8分

又由(Ⅰ)方法三)知平面EFG的法向量為……9分

……10分

結(jié)合圖知二面角的平面角為……11分

(Ⅲ) ……14分

 

20. 本題滿分14分

 (Ⅰ)由題意可得點(diǎn)A,B,C的坐標(biāo)分別為.……1分

設(shè)橢圓的標(biāo)準(zhǔn)方程是.……2分

……4分

.……5分

橢圓的標(biāo)準(zhǔn)方程是……6分

(Ⅱ)由題意直線的斜率存在,可設(shè)直線的方程為.……7分

設(shè)M,N兩點(diǎn)的坐標(biāo)分別為

聯(lián)立方程:

消去整理得,

……9分

若以MN為直徑的圓恰好過(guò)原點(diǎn),則,所以,……10分

 

所以,,

所以,

……11分   得……12分

所以直線的方程為,或.……13分

所以存在過(guò)P(0,2)的直線:使得以弦MN為直徑的圓恰好過(guò)原點(diǎn). ……14分

 

21: 本題滿分14分

 (Ⅰ)

……2分

 ……4分

(Ⅱ)

(?)0<t<t+2<,t無(wú)解;……5分

(?)0<t<<t+2,即0<t<時(shí),;……7分

(?),即時(shí),,……9分

……10分

(Ⅲ)由題意:

可得……11分

設(shè),

……12分

,得(舍)

當(dāng)時(shí),;當(dāng)時(shí),

當(dāng)時(shí),取得最大值, =-2……13分

.

的取值范圍是.……14分

 


同步練習(xí)冊(cè)答案