(II)求證: 查看更多

 

題目列表(包括答案和解析)



(I)求證:
(II)當時,求棱錐的體積

查看答案和解析>>


(I)求異面直線MN和CD1所成的角;
(II)證明:EF//平面B1CD1.

查看答案和解析>>

(07年天津卷理)(12分)

如圖,在四棱錐中,底面的中點.

    (I)證明:

    (II)證明:平面;

    (III)求二面角的大小.

查看答案和解析>>

(07年天津卷理)(14分)

設橢圓的左、右焦點分別為是橢圓上的一點原點到直線的距離為.

    (I)證明:;

    (II)設為橢圓上的兩個動點過原點作直線的垂線垂足為求點的軌跡方程.

查看答案和解析>>

(04年廣東卷)(12分)

設函數

(I)證明:當時,

(II)點(0<x0<1)在曲線上,求曲線上在點處的切線與軸,軸正向所圍成的三角形面積的表達式。(用表示)

查看答案和解析>>

 

一、選擇題(本大題12小題,每小題5分,共60分。在每小題經出的四個選項中,只有一項是符合題目要求的。))

1―5DCBAC  6―10BCADB  11―12BB

二、填空題(本大題共4個小題,每小題5分,共20分。將符合題意的答案填在題后的橫線上)

13.2   14.70  15.  16.

三、解答題:本大題共6個小題,共70分。解答應寫出文字說明,證明過程或演算步驟。

17.解:(I)…………4分

      

       …………6分

   (II)

      

               

       …………8分

      

      

       …………10分

18.解:(I)設通曉英語的有人,

       且…………1分

       則依題意有:

       …………3分

       所以,這組志愿者有人!4分

   (II)所有可能的選法有種…………5分

       A被選中的選法有種…………7分

       A被選中的概率為…………8分

   (III)用N表示事件“B,C不全被選中”,則表示事件“B,C全被選中”……10分

       則…………11分

       所以B和C不全被選中的概率為……12分

       說明:其他解法請酌情給分。

    1.    (I),

             AD為PD在平面ABC內的射影。

             又點E、F分別為AB、AC的中點,

            

             在中,由于AB=AC,故

             平面PAD……4分

         (II)設EF與AD相交于點G,連接PG。

             平面PAD,dm PAD,交線為PG,

             過A做AO平面PEF,則O在PG上,

             所以線段AO的長為點A到平面PEF的距離

             在

            

             即點A到平面PEF的距離為…………8分

             說 明:該問還可以用等體積轉化法求解,請根據解答給分。

         (III)

             平面PAC。

             過A做,垂足為H,連接EH。

             則

             所以為二面角E―PF―A的一個平面角。

             在

            

             即二面角E―PF―A的正切值為

             …………12分

             解法二:

            

      AB、AC、AP兩兩垂直,建立如圖所示空間直角坐標系,

             則A(0,0,0),E(2,0,0),D(2,2,0),F(0,2,0),P(0,0,2)……2分

             且

            

            

             平面PAD

         (II)為平面PEF的一個法向量,

             則

             令…………6分

             故點A到平面PEF的距離為:

            

             所以點A到平面PEF的距離為…………8分

         (III)依題意為平面PAF的一個法向量,

             設二面角E―PF―A的大小為(由圖知為銳角)

             則,…………10分

             即二面角E―PF―A的大小…………12分

      20.解:(I)依題意有:  ①

             所以當  ②……2分

             ①-②得:化簡得:

            

            

            

             所以數列是以2為公差的等差數列!4分

             故…………5分

             設

             是公比為64的等比數列

            

             …………8分

         (II)……9分

             …………10分

             …………11分

             …………12分

      21.解:(I)設,則依題意有:

            

             故曲線C的方程為…………4分

             注:若直接用

             得出,給2分。

         (II)設,其坐標滿足

            

             消去…………※

             故…………5分

            

             而

            

             化簡整理得…………7分

             解得:時方程※的△>0

            

         (III)

            

            

            

             因為A在第一象限,故

             由

             故

             即在題設條件下,恒有…………12分

      22.解:(I)…………3分

             處的切線互相平行

             …………5分

            

             …………6分

         (II)

            

             令

            

            

             當

             是單調增函數!9分

            

            

            

             恒成立,

             …………10分

             值滿足下列不等式組

              ①,或

             不等式組①的解集為空集,解不等式組②得

             綜上所述,滿足條件的…………12分

       

       

       

       


      同步練習冊答案
      <style id="67va4"><strong id="67va4"></strong></style>