(II)設(shè)直線的值. 查看更多

 

題目列表(包括答案和解析)

(14分)已知函數(shù)f(x)=的圖像在點P(0,f(0))處的切線方程為y=3x-2

(Ⅰ)求實數(shù)a,b的值;

(Ⅱ)設(shè)g(x)=f(x)+是[)上的增函數(shù)。

  (i)求實數(shù)m的最大值;

   (ii)當(dāng)m取最大值時,是否存在點Q,使得過點Q的直線若能與曲線y=g(x)圍成兩個封閉圖形,則這兩個封閉圖形的面積總相等?若存在,寫出點Q的坐標(biāo)(可以不必說明理由);若不存在,說明理由。

查看答案和解析>>

(本小題滿分12分)

設(shè)橢圓的離心率,右焦點到直線的距離為坐標(biāo)原點。

(I)求橢圓的方程;

(II)過點作兩條互相垂直的射線,與橢圓分別交于兩點,證明點到直線的距離為定值,并求弦長度的最小值.

 

查看答案和解析>>

(本小題滿分12分)

設(shè)橢圓的離心率,右焦點到直線的距離O為坐標(biāo)原點。

(I)求橢圓C的方程;

(II)過點O作兩條互相垂直的射線,與橢圓C分別交于A,B兩點,證明點O到直線AB的距離為定值,并求弦AB長度的最小值。

 

查看答案和解析>>

(本小題滿分14分)

設(shè)數(shù)列的前項和為,對任意的正整數(shù),都有點在直線y=5x+1上,記(n∈N*)。(I)求數(shù)列的通項公式;(II)記,設(shè),求證:對任意正整數(shù)都有;(III)設(shè)。已知正實數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。

查看答案和解析>>

(本小題滿分12分)
設(shè)橢圓的離心率,右焦點到直線的距離為坐標(biāo)原點。
(I)求橢圓的方程;
(II)過點作兩條互相垂直的射線,與橢圓分別交于兩點,證明點到直線的距離為定值,并求弦長度的最小值.

查看答案和解析>>

 

一、選擇題(本大題12小題,每小題5分,共60分。在每小題經(jīng)出的四個選項中,只有一項是符合題目要求的。))

1―5DCBAC  6―10BCADB  11―12BB

二、填空題(本大題共4個小題,每小題5分,共20分。將符合題意的答案填在題后的橫線上)

13.2   14.70  15.  16.

三、解答題:本大題共6個小題,共70分。解答應(yīng)寫出文字說明,證明過程或演算步驟。

17.解:(I)…………4分

      

       …………6分

   (II)

      

               

       …………8分

      

      

       …………10分

18.解:(I)設(shè)通曉英語的有人,

       且…………1分

       則依題意有:

       …………3分

       所以,這組志愿者有人。…………4分

   (II)所有可能的選法有種…………5分

       A被選中的選法有種…………7分

       A被選中的概率為…………8分

   (III)用N表示事件“B,C不全被選中”,則表示事件“B,C全被選中”……10分

       則…………11分

       所以B和C不全被選中的概率為……12分

       說明:其他解法請酌情給分。

   (I)

       AD為PD在平面ABC內(nèi)的射影。

       又點E、F分別為AB、AC的中點,

      

       在中,由于AB=AC,故

       ,平面PAD……4分

   (II)設(shè)EF與AD相交于點G,連接PG。

       平面PAD,dm PAD,交線為PG,

       過A做AO平面PEF,則O在PG上,

       所以線段AO的長為點A到平面PEF的距離

       在

      

       即點A到平面PEF的距離為…………8分

       說 明:該問還可以用等體積轉(zhuǎn)化法求解,請根據(jù)解答給分。

   (III)

       平面PAC。

       過A做,垂足為H,連接EH。

       則

       所以為二面角E―PF―A的一個平面角。

       在

      

       即二面角E―PF―A的正切值為

       …………12分

       解法二:

      

AB、AC、AP兩兩垂直,建立如圖所示空間直角坐標(biāo)系,

       則A(0,0,0),E(2,0,0),D(2,2,0),F(xiàn)(0,2,0),P(0,0,2)……2分

    • <dfn id="rzyw1"></dfn>

        <td id="rzyw1"><cite id="rzyw1"><acronym id="rzyw1"></acronym></cite></td>

               且

              

              

               平面PAD

           (II)為平面PEF的一個法向量,

               則

               令…………6分

               故點A到平面PEF的距離為:

              

               所以點A到平面PEF的距離為…………8分

           (III)依題意為平面PAF的一個法向量,

               設(shè)二面角E―PF―A的大小為(由圖知為銳角)

               則,…………10分

               即二面角E―PF―A的大小…………12分

        20.解:(I)依題意有:  ①

               所以當(dāng)  ②……2分

               ①-②得:化簡得:

              

              

              

               所以數(shù)列是以2為公差的等差數(shù)列!4分

               故…………5分

               設(shè)

               是公比為64的等比數(shù)列

              

               …………8分

           (II)……9分

               …………10分

               …………11分

               …………12分

        21.解:(I)設(shè),則依題意有:

              

               故曲線C的方程為…………4分

               注:若直接用

               得出,給2分。

           (II)設(shè),其坐標(biāo)滿足

              

               消去…………※

               故…………5分

              

               而

              

               化簡整理得…………7分

               解得:時方程※的△>0

              

           (III)

              

              

              

               因為A在第一象限,故

               由

               故

               即在題設(shè)條件下,恒有…………12分

        22.解:(I)…………3分

               處的切線互相平行

               …………5分

              

               …………6分

           (II)

              

               令

              

              

               當(dāng)

               是單調(diào)增函數(shù)!9分

              

              

              

               恒成立,

               …………10分

               值滿足下列不等式組

                ①,或

               不等式組①的解集為空集,解不等式組②得

               綜上所述,滿足條件的…………12分

         

         

         

         


        同步練習(xí)冊答案