解:(Ⅰ)在正三棱柱中. 查看更多

 

題目列表(包括答案和解析)

三棱柱中,側(cè)棱與底面垂直,,分別是,的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)求證:平面

(Ⅲ)求三棱錐的體積.

【解析】第一問利連結(jié),,∵M(jìn),N是AB,的中點(diǎn)∴MN//

又∵平面,∴MN//平面      ----------4分

⑵中年∵三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,∴四邊形是正方形.∴.∴.連結(jié)

,又N中的中點(diǎn),∴

相交于點(diǎn)C,∴MN平面.      --------------9分

⑶中由⑵知MN是三棱錐M-的高.在直角中,

∴MN=.又.得到結(jié)論。

⑴連結(jié),,∵M(jìn),N是AB,的中點(diǎn)∴MN//

又∵平面,∴MN//平面   --------4分

⑵∵三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,

∴四邊形是正方形.∴

.連結(jié)

,又N中的中點(diǎn),∴

相交于點(diǎn)C,∴MN平面.      --------------9分

⑶由⑵知MN是三棱錐M-的高.在直角中,,

∴MN=.又

 

查看答案和解析>>

如圖,在正三棱柱ABC-A1B1C1中,E∈BB1,截面A1EC⊥側(cè)面AC1
精英家教網(wǎng)
(1)求證:BE=EB1;
(2)若AA1=A1B1;求平面A1EC與平面A1B1C1所成二面角(銳角)的度數(shù).
注意:在下面橫線上填寫適當(dāng)內(nèi)容,使之成為(Ⅰ)的完整證明,并解答(Ⅱ).
精英家教網(wǎng)
(1)證明:在截面A1EC內(nèi),過E作EG⊥A1C,G是垂足.
①∵
 

∴EG⊥側(cè)面AC1;取AC的中點(diǎn)F,連接BF,F(xiàn)G,由AB=BC得BF⊥AC,
②∵
 

∴BF⊥側(cè)面AC1;得BF∥EG,BF、EG確定一個(gè)平面,交側(cè)面AC1于FG.
③∵
 

∴BE∥FG,四邊形BEGF是平行四邊形,BE=FG,
④∵
 

∴FG∥AA1,△AA1C∽△FGC,
⑤∵
 

FG=
1
2
AA1=
1
2
BB1
,即BE=
1
2
BB1,故BE=EB1

查看答案和解析>>

如圖,在正三棱柱ABC-A1B1C1中,底面ABC為正三角形,M、N、G分別是棱CC1、AB、BC的中點(diǎn),且.

(Ⅰ)求證:CN∥平面AMB1;

(Ⅱ)求證: B1M⊥平面AMG.

【解析】本試題主要是考查了立體幾何匯總線面的位置關(guān)系的運(yùn)用。第一問中,要證CN∥平面AMB1;,只需要確定一條直線CN∥MP,既可以得到證明

第二問中,∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,得到線線垂直,B1M⊥AG,結(jié)合線面垂直的判定定理和性質(zhì)定理,可以得證。

解:(Ⅰ)設(shè)AB1 的中點(diǎn)為P,連結(jié)NP、MP ………………1分

∵CM   ,NP   ,∴CM       NP, …………2分

∴CNPM是平行四邊形,∴CN∥MP  …………………………3分

∵CN  平面AMB1,MP奐  平面AMB1,∴CN∥平面AMB1…4分

(Ⅱ)∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,

    ∵AG⊥BC,∴AG⊥平面CC1 B1 B,∴B1M⊥AG………………6分

∵CC1⊥平面ABC,平面A1B1C1∥平面ABC,∴CC1⊥AC,CC1⊥B1 C,  

設(shè):AC=2a,則

…………………………8分

同理,…………………………………9分

∵ BB1∥CC1,∴BB1⊥平面ABC,∴BB1⊥AB,

………………………………10分

 

查看答案和解析>>

如圖,在正三棱柱ABC-A1B1C1中,E∈BB1,截面A1EC⊥側(cè)面AC1

(1)求證:BE=EB1;
(2)若AA1=A1B1;求平面A1EC與平面A1B1C1所成二面角(銳角)的度數(shù).
注意:在下面橫線上填寫適當(dāng)內(nèi)容,使之成為(Ⅰ)的完整證明,并解答(Ⅱ).

(1)證明:在截面A1EC內(nèi),過E作EG⊥A1C,G是垂足.
①∵_(dá)_____
∴EG⊥側(cè)面AC1;取AC的中點(diǎn)F,連接BF,F(xiàn)G,由AB=BC得BF⊥AC,
②∵_(dá)_____
∴BF⊥側(cè)面AC1;得BF∥EG,BF、EG確定一個(gè)平面,交側(cè)面AC1于FG.
③∵_(dá)_____
∴BE∥FG,四邊形BEGF是平行四邊形,BE=FG,
④∵_(dá)_____
∴FG∥AA1,△AA1C∽△FGC,
⑤∵_(dá)_____
,即

查看答案和解析>>

如圖,在三棱柱中,側(cè)面,為棱上異于的一點(diǎn),,已知,求:

(Ⅰ)異面直線的距離;

(Ⅱ)二面角的平面角的正切值.

【解析】第一問中,利用建立空間直角坐標(biāo)系

解:(I)以B為原點(diǎn),分別為Y,Z軸建立空間直角坐標(biāo)系.由于,

在三棱柱中有

,

設(shè)

側(cè)面,故. 因此是異面直線的公垂線,則,故異面直線的距離為1.

(II)由已知有故二面角的平面角的大小為向量的夾角.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案