8.若二面角的平面角是銳角.點P到.和棱的距離分別為.4和.則二面角的大小為 查看更多

 

題目列表(包括答案和解析)

如圖1,在正三角形ABC中,已知AB=5,E、F、P分別是AB、AC、BC邊上的點,設數(shù)學公式,將△ABC沿EF折起到△A1EF的位置,使二面角A1-EF-B的大小為數(shù)學公式,連接A1B、A1P(如圖2).
(1)求證:PF∥平面A1EB;
(2)若EF⊥平面A1EB,求x的值;
(3)當EF⊥平面A1EB時,求平面A1BP與平面A1EF所成銳二面角的余弦值.

查看答案和解析>>

如圖,已知四棱錐S-ABCD的底面是邊長為4的正方形,S在底面上的射影O落在正方形ABCD內(nèi),SO的長為3,O到AB,AD的距離分別為2和1,P是SC的中點.
(Ⅰ)求證:平面SOB⊥底面ABCD;
(Ⅱ)設Q是棱SA上的一點,若
AQ
=
3
4
AS
,求平面BPQ與底面ABCD所成的銳二面角余弦值的大小.

查看答案和解析>>

如圖,已知四棱錐S-ABCD的底面是邊長為4的正方形,S在底面上的射影O落在正方形ABCD內(nèi),SO的長為3,O到AB,AD的距離分別為2和1,P是SC的中點.
(Ⅰ)求證:平面SOB⊥底面ABCD;
(Ⅱ)設Q是棱SA上的一點,若=,求平面BPQ與底面ABCD所成的銳二面角余弦值的大。

查看答案和解析>>

精英家教網(wǎng)已知四棱錐P-ABCD,底面是邊長為1的正方形,側(cè)棱PC長為2,且PC⊥底面ABCD,
E是側(cè)棱PC上的動點.
(Ⅰ) 求點C到平面PDB的距離;
(Ⅱ) 若點E為PC的中點,求平面ADE與平面ABE所成的銳二面角的大。

查看答案和解析>>

已知四棱錐P-ABCD,底面是邊長為1的正方形,側(cè)棱PC長為2,且PC⊥底面ABCD,
E是側(cè)棱PC上的動點.
(Ⅰ) 求點C到平面PDB的距離;
(Ⅱ) 若點E為PC的中點,
求平面ADE與平面ABE所成的銳二面角的大。

查看答案和解析>>

 

一:選擇題:BCAAD   CCCBA  CC

 

二:填空題:

  • <rt id="kqqgo"></rt>
  • 20090109

    三:解答題

    17.解:(1)由已知

       ∴ 

       ∵  

    ∴CD⊥AB,在Rt△BCD中BC2=BD2+CD2,                                                  

        又CD2=AC2-AD2, 所以BC2=BD2+AC2-AD2=49,                                               

    所以                                                                                    

    (2)在△ABC中,   

                

            

         而   

    如果,

        

                                                                       

                                      

    18.解:(1)點A不在兩條高線上,

     不妨設AC邊上的高:,AB邊上的高:

    所以AC,AB的方程為:,

    ,即

    由此可得直線BC的方程為:。

    (2),

    由到角公式得:

    同理可算,。

    19.解:(1)令

       則,因,

    故函數(shù)上是增函數(shù),

    時,,即

       (2)令

        則

        所以在(,―1)遞減,(―1,0)遞增,

    (0,1)遞減,(1,)遞增。

    處取得極小值,且

    故存在,使原方程有4個不同實根。

    20.解(1)連結(jié)FO,F是AD的中點,

    *  OFAD,

    EO平面ABCD

    由三垂線定理,得EFAD,

    AD//BC,

    EFBC                          

    連結(jié)FB,可求得FB=PF=,則EFPB,

    PBBC=B,

     EF平面PBC。 

    (2)連結(jié)BD,PD平面ABCD,過點E作EOBD于O,

    連結(jié)AO,則EO//PD

    且EO平面ABCD,所以AEO為異面直線PD、AE所成的角              

    E是PB的中點,則O是BD的中點,且EO=PD=1

    在Rt△EOA中,AO=,

       所以:異面直線PD與AE所成的角的大小為

    (3)取PC的中點G,連結(jié)EG,F(xiàn)G,則EG是FG在平面PBC內(nèi)的射影

    * PD平面ABCD,

    * PDBC,又DCBC,且PDDC=D,

    BC平面PDC

    * BCPC,

    EG//BC,則EGPC,

    FGPC

    所以FGE是二面角F―PC―B的平面角                                   

    在Rt△FEG中,EG=BC=1,GF=

    ,

    所以二面角F―PC―B的大小為   

    21.解(1), 

    ,

       ,令,

    所以遞增

    ,可得實數(shù)的取值范圍為

    (2)當時,

       所以:

    即為 

    可化為

    由題意:存在,時,

    恒成立

    ,

    只要

     

    所以:

    ,知

    22.證明:(1)由已知得

      

    (2)由(1)得

    =

     


    同步練習冊答案
    • <samp id="kqqgo"><delect id="kqqgo"></delect></samp>
      <ul id="kqqgo"><noscript id="kqqgo"></noscript></ul>