②函數(shù)在區(qū)間1.2.上存在零點(diǎn)的充要條件是, 查看更多

 

題目列表(包括答案和解析)

 “a>l”是“函數(shù)在區(qū)間[1,2]上存在零點(diǎn)”的

    A.充分不必要條件                       B.必要不充分條件

    C.充要條件                             D.既不充分也不必要條件

查看答案和解析>>

函數(shù)f(x)=lnx-在區(qū)間(k,k+1)(k∈N*)上存在零點(diǎn),則k的值為( )
A.0
B.2
C.0或2
D.1或2

查看答案和解析>>

函數(shù)f(x)=|ex-bx|,其中e為自然對(duì)數(shù)的底.
(1)當(dāng)b=1時(shí),求曲線y=f(x)在x=1處的切線方程;
(2)若函數(shù)y=f(x)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)b的取值范圍;
(3)當(dāng)b>0時(shí),判斷函數(shù)y=f(x)在區(qū)間(0,2)上是否存在極大值.若存在,求出極大值及相應(yīng)實(shí)數(shù)b的取值范圍.

查看答案和解析>>

函數(shù)f(x)=|ex-bx|,其中e為自然對(duì)數(shù)的底.
(1)當(dāng)b=1時(shí),求曲線y=f(x)在x=1處的切線方程;
(2)若函數(shù)y=f(x)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)b的取值范圍;
(3)當(dāng)b>0時(shí),判斷函數(shù)y=f(x)在區(qū)間(0,2)上是否存在極大值.若存在,求出極大值及相應(yīng)實(shí)數(shù)b的取值范圍.

查看答案和解析>>

函數(shù)f(x)=|ex-bx|,其中e為自然對(duì)數(shù)的底.
(1)當(dāng)b=1時(shí),求曲線y=f(x)在x=1處的切線方程;
(2)若函數(shù)y=f(x)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)b的取值范圍;
(3)當(dāng)b>0時(shí),判斷函數(shù)y=f(x)在區(qū)間(0,2)上是否存在極大值.若存在,求出極大值及相應(yīng)實(shí)數(shù)b的取值范圍.

查看答案和解析>>

17.本題滿分14分.已知函數(shù)。

(1)       求函數(shù)上的值域;

(2)       在中,若,求的值。

16

21.本小題滿分12分.

已知函數(shù)fx.=lnx-,

(I)        求函數(shù)fx.的單調(diào)增區(qū)間;

(II)     若函數(shù)fx.在[1,e]上的最小值為,求實(shí)數(shù)a的值。

3.已知,則的值為    .

A.-2          B.-1        C.1             D.2

19.解:1.∵,

,

,

,.

2.∵,,∴,

,∴,

,∴,

.

20.此題主要考查數(shù)列.等差.等比數(shù)列的概念.?dāng)?shù)列的遞推公式.?dāng)?shù)列前n項(xiàng)和的求法

  同時(shí)考查學(xué)生的分析問題與解決問題的能力,邏輯推理能力及運(yùn)算能力.

解:I.

    

Ⅱ.

16.本題滿分14分.

解:1.連,四邊形菱形   ,

www.ks5u.com

  的中點(diǎn),

               ,

                   

2.當(dāng)時(shí),使得,連,交,則 的中點(diǎn),又上中線,為正三角形的中心,令菱形的邊長為,則,。

           

       

   即:  

22.本小題滿分14分.

解:I.1.,

    !1分

    處取得極值,

    …………………………………………………2分

    即

    ………………………………………4分

   ii.在,

    由

          

          

    ;

    當(dāng);

    ;

    .……………………………………6分

    面

    ,

    且

    又

    ,

   

    ……………9分

   Ⅱ.當(dāng),

    ①;

    ②當(dāng)時(shí),

    ,

   

    ③,

    從面得;

    綜上得,.………………………14分

 

 


同步練習(xí)冊(cè)答案