題目列表(包括答案和解析)
設等比數(shù)列的公比q=2,前n項和為Sn,則=
A. B. C. D.設等比數(shù)列的公比q=2,前n項和為Sn ,則= ( )
A. B. C. D.
設等比數(shù)列的公比為q,前n項和為Sn,若Sn+1,Sn,Sn+2成等差數(shù)列,則q的值為 .
設等比數(shù)列的公比為q,前n項和為S??n,若Sn+1,S??n,Sn+2成等差數(shù)列,則q的值為_________
一.選擇題
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
C
B
C
A
D
C
B
A
D
D
A
二.13. 14. 15. 16.(萬元)
三.17.(I) 由
代入 得:
整理得: (5分)
(II)由
由余弦定理得:
∴
----------------------------- (9分)
又 ------ (12分)
18.(Ⅰ) 的分布列.
2
3
4
5
6
p
- --------- ------ (4分)
(Ⅱ)設擲出的兩枚骰子的點數(shù)同是為事件
同擲出1的概率,同擲出2的概率,同擲出3的概率
所以,擲出的兩枚骰子的點數(shù)相同的概率為P= 。ǎ阜郑
(Ⅲ)
時)
。
3
4
5
。
3
6
6
6
6
p
=
時)
。
3
4
5
。
2
5
8
8
8
p
=
時)
。
3
4
5
。
1
4
7
10
10
p
=
時, 最大為 (12分)
19.(Ⅰ)
兩兩相互垂直, 連結并延長交于F.
同理可得
------------ (6分)
(Ⅱ)是的重心
F是SB的中點
梯形的高
--- (12分)
【注】可以用空間向量的方法
20.設2,f (a1), f (a2), f (a3), …,f (an), 2n+4的公差為d,則2n+4=2+(n+2-1)d d=2,
……………………(4分)
(2),
-------------------- (8分)
21.(Ⅰ)∵直線的斜率為1,拋物線的焦點
∴直線的方程為
由
設
則
又
故 夾角的余弦值為 ----------------- 。ǎ斗郑
(Ⅱ)由
即得:
由
從而得直線的方程為
∴在軸上截距為或
∵是的減函數(shù)
∴ 從而得
故在軸上截距的范圍是 ------------ (12分)
22.(Ⅰ)
在直線上,
?????????????? 。ǎ捶郑
(Ⅱ)
在上是增函數(shù),在上恒成立
所以得 ??????????????? 。ǎ阜郑
(Ⅲ)的定義域是,
①當時,在上單增,且,無解;
、诋時,在上是增函數(shù),且,
有唯一解;
③當時,
那么在上單減,在上單增,
而
時,無解;
時,有唯一解 ;
時,
那么在上,有唯一解
而在上,設
即得在上,有唯一解.
綜合①②③得:時,有唯一解;
時,無解;
時,有且只有二解.
?????????????? 。ǎ保捶郑
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com