7.已知曲線C1:(為參數(shù)).曲線C2:.則曲線C1與曲線C2的交點(diǎn)個(gè)數(shù)為 查看更多

 

題目列表(包括答案和解析)

已知曲線C1為參數(shù)),曲線C2t為參數(shù)).

(Ⅰ)指出C1C2各是什么曲線,并說(shuō)明C1C2公共點(diǎn)的個(gè)數(shù);

(Ⅱ)若把C1C2上各點(diǎn)的縱坐標(biāo)都?jí)嚎s為原來(lái)的一半,分別得到曲線.寫(xiě)出的參數(shù)方程.公共點(diǎn)的個(gè)數(shù)和C公共點(diǎn)的個(gè)數(shù)是否相同?說(shuō)明你的理由.

查看答案和解析>>

已知曲線C1為參數(shù)),曲線C2t為參數(shù)).
(Ⅰ)指出C1,C2各是什么曲線,并說(shuō)明C1C2公共點(diǎn)的個(gè)數(shù);
(Ⅱ)若把C1C2上各點(diǎn)的縱坐標(biāo)都?jí)嚎s為原來(lái)的一半,分別得到曲線.寫(xiě)出的參數(shù)方程.公共點(diǎn)的個(gè)數(shù)和C公共點(diǎn)的個(gè)數(shù)是否相同?說(shuō)明你的理由.

查看答案和解析>>

已知曲線C1為參數(shù)),曲線C2(t為參數(shù)).

(1)指出C1,C2各是什么曲線,并說(shuō)明C1與C2公共點(diǎn)的個(gè)數(shù);

(2)若把C1,C2上各點(diǎn)的縱坐標(biāo)都拉伸為原來(lái)的兩倍,分別得到曲線.寫(xiě)出的參數(shù)方程.公共點(diǎn)的個(gè)數(shù)和C公共點(diǎn)的個(gè)數(shù)是否相同?說(shuō)明你的理由.

 

查看答案和解析>>

已知曲線C1為參數(shù)),曲線C2(t為參數(shù)).
(1)指出C1,C2各是什么曲線,并說(shuō)明C1與C2公共點(diǎn)的個(gè)數(shù);
(2)若把C1,C2上各點(diǎn)的縱坐標(biāo)都拉伸為原來(lái)的兩倍,分別得到曲線.寫(xiě)出的參數(shù)方程.公共點(diǎn)的個(gè)數(shù)和C公共點(diǎn)的個(gè)數(shù)是否相同?說(shuō)明你的理由.

查看答案和解析>>

已知曲線C1為參數(shù)),曲線C2(t為參數(shù)).
(1)指出C1,C2各是什么曲線,并說(shuō)明C1與C2公共點(diǎn)的個(gè)數(shù);
(2)若把C1,C2上各點(diǎn)的縱坐標(biāo)都?jí)嚎s為原來(lái)的一半,分別得到曲線.寫(xiě)出的參數(shù)方程.公共點(diǎn)的個(gè)數(shù)和C公共點(diǎn)的個(gè)數(shù)是否相同?說(shuō)明你的理由.

查看答案和解析>>

一.選擇題

題號(hào)

10

11

12

答案

C

C

A

D

C

B

A

D

D

A

二.13.      14.      15.     16.(萬(wàn)元)

三.17.(I) 由

代入 得:     

整理得:                  (5分)

(II)由 

        由余弦定理得:

       -----------------------------   (9分)

  

       ------   (12分)

18.(Ⅰ)  的分布列.   

   2

   3

   4

   5

    6

p

 

 

                                - --------- ------   (4分)

(Ⅱ)設(shè)擲出的兩枚骰子的點(diǎn)數(shù)同是為事件

     同擲出1的概率,同擲出2的概率,同擲出3的概率

所以,擲出的兩枚骰子的點(diǎn)數(shù)相同的概率為P= 。ǎ阜郑

(Ⅲ)

時(shí))

 

 。

  3

  4

  5 

  6

 

   3

   6

    6

   6

    6

 p

   

 

 

 

 

時(shí))

 

 。

  3

  4

  5 

 。

 

   2

   5

    8

   8

    8

 p

   

 

 

 

 

時(shí))

 

 。

  3

  4

  5 

 。

 

   1

   4

    7

  10

    10

 p

   

 

 

 

 

時(shí), 最大為                             (12分)

19.(Ⅰ)

   

    兩兩相互垂直, 連結(jié)并延長(zhǎng)交于F.

   

 

    同理可得

  

  

  

          ------------  (6分)

(Ⅱ)的重心

    F是SB的中點(diǎn)

  

  

   梯形的高

        ---     (12分)

       【注】可以用空間向量的方法

20.設(shè)2,f (a1),  f (a2),  f (a3), …,f (an),  2n+4的公差為d,則2n+4=2+(n+2-1)d   d=2,

 

……………………(4分)

   (2),

 

       --------------------              (8分)

 

21.(Ⅰ)∵直線的斜率為1,拋物線的焦點(diǎn) 

    ∴直線的方程為

   由

  設(shè)

  則

  又

       

  故 夾角的余弦值為    -----------------  。ǎ斗郑

(Ⅱ)由

  即得:

  由 

從而得直線的方程為

 ∴軸上截距為

  ∵的減函數(shù)

∴  從而得

軸上截距的范圍是  ------------ (12分)

22.(Ⅰ) 

    在直線上,

                ??????????????     。ǎ捶郑

(Ⅱ)

 上是增函數(shù),上恒成立

 所以得         ??????????????? 。ǎ阜郑

(Ⅲ)的定義域是,

①當(dāng)時(shí),上單增,且,無(wú)解;

、诋(dāng)時(shí),上是增函數(shù),且

有唯一解;

③當(dāng)時(shí),

那么在單減,在單增,

    時(shí),無(wú)解;

     時(shí),有唯一解 ;

     時(shí),

     那么在上,有唯一解

而在上,設(shè)

  

即得在上,有唯一解.

綜合①②③得:時(shí),有唯一解;

        時(shí),無(wú)解;

       時(shí),有且只有二解.

 

               ??????????????     (14分)

 


同步練習(xí)冊(cè)答案