題目列表(包括答案和解析)
(本題滿分12分)
已知冪函數(shù)圖象經(jīng)過點,求出函數(shù)解析式,并指出函數(shù)的單調(diào)性與奇偶性。
已知函數(shù),,k為非零實數(shù).
(Ⅰ)設t=k2,若函數(shù)f(x),g(x)在區(qū)間(0,+∞)上單調(diào)性相同,求k的取值范圍;
(Ⅱ)是否存在正實數(shù)k,都能找到t∈[1,2],使得關于x的方程f(x)=g(x)在[1,5]上有且僅有一個實數(shù)根,且在[-5,-1]上至多有一個實數(shù)根.若存在,請求出所有k的值的集合;若不存在,請說明理由.
【解析】本試題考查了運用導數(shù)來研究函數(shù)的單調(diào)性,并求解參數(shù)的取值范圍。與此同時還能對于方程解的問題,轉化為圖像與圖像的交點問題來長處理的數(shù)學思想的運用。
(本小題滿分12分)
已知函數(shù);
(1)求; (2)求的最大值與最小值.
【解析】第一問利用導數(shù)的運算法則,冪函數(shù)的導數(shù)公式,可得。
第二問中,利用第一問的導數(shù),令導數(shù)為零,得到
然后結合導數(shù),函數(shù)的關系判定函數(shù)的單調(diào)性,求解最值即可。
已知函數(shù)其中a>0.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個零點,求a的取值范圍;
(III)當a=1時,設函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t),求函數(shù)g(t)在區(qū)間[-3,-1]上的最小值。
【考點定位】本小題主要考查導數(shù)的運算,利用導數(shù)研究函數(shù)的單調(diào)性、函數(shù)的零點,函數(shù)的最值等基礎知識.考查函數(shù)思想、分類討論思想.考查綜合分析和解決問題的能力.
已知函數(shù)
(1)當時,討論函數(shù)的單調(diào)性:
(2)若函數(shù)的圖像上存在不同兩點,設線段的中點為,使得在點處的切線與直線平行或重合,則說函數(shù)是“中值平衡函數(shù)”,切線叫做函數(shù)的“中值平衡切線”。試判斷函數(shù)是否是“中值平衡函數(shù)”?若是,判斷函數(shù)的“中值平衡切線”的條數(shù);若不是,說明理由.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com