解:根據(jù)求導(dǎo)法則有. 查看更多

 

題目列表(包括答案和解析)

試根據(jù)復(fù)合函數(shù)的求導(dǎo)法則,研究函數(shù)f(x)=xx(x>0)的性質(zhì),并回答:下列命題中假命題的個(gè)數(shù)是(  )
①f(x)的極大值為1;
②f(x)的極小值為1;
③f(x)的一個(gè)單調(diào)遞增區(qū)間是(
1
10
,10)
A、0B、1C、2D、3

查看答案和解析>>

試根據(jù)復(fù)合函數(shù)的求導(dǎo)法則,研究函數(shù)f(x)=xx(x>0)的性質(zhì),并回答:下列命題中假命題的個(gè)數(shù)是( )
①f(x)的極大值為1;
②f(x)的極小值為1;
③f(x)的一個(gè)單調(diào)遞增區(qū)間是
A.0
B.1
C.2
D.3

查看答案和解析>>

試根據(jù)復(fù)合函數(shù)的求導(dǎo)法則,研究函數(shù)f(x)=xx(x>0)的性質(zhì),并回答:下列命題中假命題的個(gè)數(shù)是( )
①f(x)的極大值為1;
②f(x)的極小值為1;
③f(x)的一個(gè)單調(diào)遞增區(qū)間是
A.0
B.1
C.2
D.3

查看答案和解析>>

請(qǐng)先閱讀:
設(shè)可導(dǎo)函數(shù) f(x) 滿足f(-x)=-f(x)(x∈R).
在等式f(-x)=-f(x) 的兩邊對(duì)x求導(dǎo),
得(f(-x))′=(-f(x))′,
由求導(dǎo)法則,得f′(-x)•(-1)=-f′(x),
化簡(jiǎn)得等式f′(-x)=f′(x).
(Ⅰ)利用上述想法(或其他方法),結(jié)合等式(1+x)n=
C
0
n
+
C
1
n
x+
C
2
n
x2+…+
C
n
n
xn
(x∈R,整數(shù)n≥2),證明:n[(1+x)n-1-1]=2
C
2
n
x+3
C
3
n
x2+4
C
4
n
x3+…+n
C
n
n
xn-1
;
(Ⅱ)當(dāng)整數(shù)n≥3時(shí),求
C
1
n
-2
C
2
n
+3
C
3
n
-…+(-1)n-1n
C
n
n
的值;
(Ⅲ)當(dāng)整數(shù)n≥3時(shí),證明:2
C
2
n
-3•2
C
3
n
+4•3
C
4
n
+…+(-1)n-2n(n-1)
C
n
n
=0

查看答案和解析>>

請(qǐng)先閱讀:
在等式cos2x=2cos2x-1(x∈R)的兩邊求導(dǎo),得:(cos2x)′=(2cos2x-1)′,由求導(dǎo)法則,得(-sin2x)•2=4cosx•(-sinx),化簡(jiǎn)得等式:sin2x=2cosx•sinx.
(1)利用上題的想法(或其他方法),結(jié)合等式(1+x)n=Cn0+Cn1x+Cn2x2+…+Cnnxn(x∈R,正整數(shù)n≥2),證明:n[(1+x)n-1-1]=
n
k=2
k
C
k
n
xk-1

(2)對(duì)于正整數(shù)n≥3,求證:
(i)
n
k=1
(-1)kk
C
k
n
=0
;
(ii)
n
k=1
(-1)kk2
C
k
n
=0
;
(iii)
n
k=1
1
k+1
C
k
n
=
2n+1-1
n+1

查看答案和解析>>


同步練習(xí)冊(cè)答案