.綜上.原結(jié)論成立. 查看更多

 

題目列表(包括答案和解析)

如圖2-4-18(1),四邊形ABCD是⊙O的內(nèi)接四邊形,A的中點,過A點的切線與CB的延長線交于點E.

           

  (1)                               (2)

圖2-4-18

(1)求證:AB·DA=CD·BE;

(2)如圖2-4-18(2),若點E在CB延長線上運動,使切線EA變?yōu)楦罹EFA,其他條件不變,問具備什么條件使原結(jié)論成立?

查看答案和解析>>

已知,(其中

⑴求

⑵試比較的大小,并說明理由.

【解析】第一問中取,則;                         …………1分

對等式兩邊求導(dǎo),得

,則得到結(jié)論

第二問中,要比較的大小,即比較:的大小,歸納猜想可得結(jié)論當(dāng)時,;

當(dāng)時,;

當(dāng)時,;

猜想:當(dāng)時,運用數(shù)學(xué)歸納法證明即可。

解:⑴取,則;                         …………1分

對等式兩邊求導(dǎo),得

,則。       …………4分

⑵要比較的大小,即比較:的大小,

當(dāng)時,;

當(dāng)時,;

當(dāng)時,;                              …………6分

猜想:當(dāng)時,,下面用數(shù)學(xué)歸納法證明:

由上述過程可知,時結(jié)論成立,

假設(shè)當(dāng)時結(jié)論成立,即,

當(dāng)時,

時結(jié)論也成立,

∴當(dāng)時,成立。                          …………11分

綜上得,當(dāng)時,

當(dāng)時,

當(dāng)時, 

 

查看答案和解析>>

已知數(shù)列的前項和為,且 (N*),其中

(Ⅰ) 求的通項公式;

(Ⅱ) 設(shè) (N*).

①證明: ;

② 求證:.

【解析】本試題主要考查了數(shù)列的通項公式的求解和運用。運用關(guān)系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到,②由于,

所以利用放縮法,從此得到結(jié)論。

解:(Ⅰ)當(dāng)時,由.  ……2分

若存在,

從而有,與矛盾,所以.

從而由.  ……6分

 (Ⅱ)①證明:

證法一:∵

 

.…………10分

證法二:,下同證法一.           ……10分

證法三:(利用對偶式)設(shè),,

.又,也即,所以,也即,又因為,所以.即

                    ………10分

證法四:(數(shù)學(xué)歸納法)①當(dāng)時, ,命題成立;

   ②假設(shè)時,命題成立,即,

   則當(dāng)時,

    即

故當(dāng)時,命題成立.

綜上可知,對一切非零自然數(shù),不等式②成立.           ………………10分

②由于

所以,

從而.

也即

 

查看答案和解析>>

已知函數(shù)①f(x)=2lnx;②f(x)=3ecosx;③f(x)=3ex;其中對于f(x)定義域內(nèi)的任意一個自變量都存在唯一個個自變量x2,使
f(x1)f(x2)
=3
成立的函數(shù)是
 
.(填上所有正確結(jié)論的序號)

查看答案和解析>>

已知△ABC為鈍角三角形,且∠C為鈍角,函數(shù)y=f(x)在(0,1)上是減函數(shù),則下列結(jié)論成立的是( 。

查看答案和解析>>


同步練習(xí)冊答案