如圖.在底面是菱形的四棱錐P―ABCD中.∠ABC=60°.PA=AC=a.PB=PD=.點(diǎn)E在PD上.且PE : ED=2 : 1. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,在底面是菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=
2
a
,點(diǎn)E是PD的中點(diǎn).
(I)證明PA⊥平面ABCD,PB∥平面EAC;
(II)求以AC為棱,EAC與DAC為面的二面角θ的正切值.

查看答案和解析>>

精英家教網(wǎng)如圖,在底面是菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=
2
a
,點(diǎn)E在PD上,且PE:ED=2:1.
(Ⅰ)證明PA⊥平面ABCD;
(Ⅱ)求以AC為棱,EAC與DAC為面的二面角θ的大小;
(Ⅲ)在棱PC上是否存在一點(diǎn)F,使BF∥平面AEC?證明你的結(jié)論.

查看答案和解析>>

如圖,在底面是菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=1,PB=PD=
2
,點(diǎn)E在PD上,且PE:ED=2:1,
(1)求四棱錐P-ABCD的體積;
(2)在棱PC上是否存在一點(diǎn)F,使BF∥平面AEC?證明你的結(jié)論.

查看答案和解析>>

精英家教網(wǎng)如圖,在底面是菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=
2
a,點(diǎn)E在PD上,且PE:ED=2:1.
(Ⅰ)求二面角E-AC-D的大小:
(Ⅱ)在棱PC上是否存在一點(diǎn)F,使BF∥平面AEC?證明你的結(jié)論.

查看答案和解析>>

如圖,在底面是菱形的四棱錐P-ABCD,∠ABC=60°,PA=AC=a,PB=PD=
2
a
,點(diǎn)E是PD的中點(diǎn).證明:
(Ⅰ)PA⊥平面ABCD;
(Ⅱ)PB∥平面EAC.

查看答案和解析>>

 

一、選擇題

1.C  2.A  3.D  4.C  5.B  6.C  7.D  8.B  9.A  10.C  11.B  12.B

        1,3,5

        13.   14.=0   15.-   16.3

        三、解答題

        17.解:(1)∵  ……2分

           …………4分

        ……6分

        (2)由 ……8分

        ,故tanB=2  …………10分

        18.解:(1)設(shè)取出的球不放回袋中,第3次取球才得到紅球的概率為P1

           ………………6分

        (2)設(shè)取出的球放回袋中,第3次取球才得到紅球的概率P2

           ………………12分

        19.(1)證明:∵底面ABCD是菱形,且∠ABC=60°

        ∴AB=AD=AC=a,在△PAB中,由PA2+AB2=2a=PB2得PA⊥AB,

        同理得PA⊥AD, ∴PA⊥平面ABCD

        (2)作EG//PA交AD于G,由PA⊥平面ABCD知EG⊥平面ABCD,

        作GH//AC于H,連結(jié)EH,則EH⊥AC,∴∠EHG為二面角的平面角 ……8分

        ∵PE:ED=2:1, ∴EG=,……10分

            …………12分

        20.(本小題12分)

        解:(Ⅰ)∵,

        的公比為的等比數(shù)列 …………3分

        又n=1時(shí), ……6分

        (Ⅱ)∵   …………8分

           ……   ……10分

        以上各式相加得:]

          …………12分

        21.(本小題12分)

        解:(Ⅰ)由題意,設(shè)雙曲線方程為  ……2分

        ,∴方程為 …4分

        (Ⅱ)由消去y得 ……7分

        當(dāng)k=2時(shí)得

             

          ……10分

        當(dāng)k=-2時(shí)同理得

        綜上:∠MFN為直角.   …………12分

        22.解:(1)   …………2分

        上為單調(diào)函數(shù),而不可能恒成立

        所以上恒成立,

           …………6分

        (2)依題意,方程有兩個(gè)不同的實(shí)數(shù)根,

           ……9分

                    

        所以

        所以 

        綜上:  ………………12分

         

         


        同步練習(xí)冊(cè)答案