4.給出如下三個命題: ①若“p且q 為假命題.則p.q均為假命題, 查看更多

 

題目列表(包括答案和解析)

給出如下三個命題:
①若“p且q”為假命題,則p、q均為假命題;
②命題“若x≥2且y≥3,則x+y≥5”的否命題為“若x<2且y<3,則x+y<5”;
③四個實數(shù)a、b、c、d依次成等比數(shù)列的必要而不充分條件是ad=bc;
④在△ABC中,“A>45°”是“sinA>
2
2
”的充分不必要條件.
其中不正確的命題的個數(shù)是( 。
A、4B、3C、2D、1

查看答案和解析>>

給出如下三個命題:
①若“p且q”為假命題,則p、q均為假命題;
②命題“若x≥2且y≥3,則x+y≥5”的否命題為“若x<2且y<3,則x+y<5”;
③在△ABC中,“A>45°”是“sinA>
2
2
”的充要條件.
其中不正確的命題的個數(shù)是( 。
A、3B、2C、1D、0

查看答案和解析>>

給出如下三個命題:
①若“p且q”為假命題,則p、q均為假命題;
②命題“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”;
③“?x∈R,x2+1≥1”的否定是“?x∈R,x2+1≤1”.
正確的是( 。

查看答案和解析>>

給出如下三個命題:
①若“p且q”為假命題,則p、q均為假命題;
②命題“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”;
③“?x∈R,x2+1≥1”的否定是“?x∈R,x2+1≤1”.
其中不正確的命題的個數(shù)是( 。

查看答案和解析>>

給出如下三個命題:①若p且q為假命題,則p、q均為假命題;②“若x≥2且y≥3,則x+y≥5”為假命題;③“ad=bc”是“四個實數(shù)a,b,c,d依次成等比數(shù)列”的必要而不充分條件.其中不正確的命題序號是( 。

查看答案和解析>>

 

一、選擇題:

題號

1

2

3

4

5

6

7

8

9

10

答案

B

B

B

C

A

D

B

C

C

B

 

二、填空題:

題號

11

12

13

14

15

 

答案

 

1000

6ec8aac122bd4f6e

6ec8aac122bd4f6e

 

三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.

16.(本小題滿分12分)

解:(1)由=,得:=,

              即:,     

        又∵0<6ec8aac122bd4f6e     ∴=6ec8aac122bd4f6e.             

   (2)直線6ec8aac122bd4f6e方程為:

                           

6ec8aac122bd4f6e到直線6ec8aac122bd4f6e的距離為:

              ∵

              ∴       ∴ 

              又∵0<6ec8aac122bd4f6e,        

∴sin>0,cos<0

              ∴ 

∴sin6ec8aac122bd4f6e-cos6ec8aac122bd4f6e=   

17.(本小題滿分12分)

解:(1)某同學被抽到的概率為

設有名男同學,則男、女同學的人數(shù)分別為

(2)把名男同學和名女同學記為,則選取兩名同學的基本事件有種,其中有一名女同學的有

選出的兩名同學中恰有一名女同學的概率為

(3),

第二同學的實驗更穩(wěn)定

                              

18.(本小題滿分14分)

解:(1)分別是棱中點   

    • 平面

      是棱的中點            

      平面

      平面平面

      (2)  

      同理

            

        

      ,       

      ,,    

       

      19.(本小題滿分14分)

      解:(1)由……①,得……②

      ②-①得:    

      所以,求得     

      (2)    

                                                           

       

       

      20.(本小題滿分14分)

      解:(1)由題設知:

      得:

      解得,橢圓的方程為

      (2)

                  

      從而將求的最大值轉化為求的最大值

      是橢圓上的任一點,設,則有

      ,

      時,取最大值   的最大值為

       

      21.(本小題滿分14分)

      解:(1)由,,得,

      所以,

      (2)由題設得

      對稱軸方程為,

      由于上單調(diào)遞增,則有

      (Ⅰ)當時,有

      (Ⅱ)當時,

      設方程的根為,

      ①若,則,有    解得

      ②若,即,有;

                

      由①②得

      綜合(Ⅰ), (Ⅱ)有 

       


      同步練習冊答案