題目列表(包括答案和解析)
(13分)已知函數(shù).
(Ⅰ)若在上是增函數(shù),求實數(shù)的取值范圍;
(Ⅱ)是否存在正實數(shù),使得的導(dǎo)函數(shù)有最大值?若存在,求出的值;若不存在,請說明理由.已知在區(qū)間上是增函數(shù).
(1)求實數(shù)的取值范圍;
(2)記(1)中實數(shù)的范圍為集合A,且設(shè)關(guān)于的方程的兩個非零實根為.
①求的最大值;
②試問:是否存在實數(shù)m,使得不等式對于任意及恒成立?若存在,求m的取值范圍;若不存在,請說明理由.
集合.
①若,求實數(shù)的值;②若,求實數(shù)的取值范圍.
③若.試定義一種新運算,使
(1)當時,在上恒成立,求實數(shù)的取值范圍;
(2)當時,若函數(shù)在上恰有兩個不同零點,求實數(shù)的取值范圍;
(3)是否存在實數(shù),使函數(shù)f(x)和函數(shù)在公共定義域上具有相同的單調(diào)區(qū)間?若存在,求出的值,若不存在,說明理由。
一、選擇題:
題號
1
2
3
4
5
6
7
8
9
10
答案
B
B
B
C
A
D
B
C
C
B
二、填空題:
題號
11
12
13
14
15
答案
1000
三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.
16.(本小題滿分12分)
解:(1)由=,得:=,
即:,
又∵0<< ∴=.
(2)直線方程為:.
,
點到直線的距離為:.
∵
∴ ∴
又∵0<<,
∴sin>0,cos<0
∴
∴sin-cos=
17.(本小題滿分12分)
解:(1)某同學(xué)被抽到的概率為
設(shè)有名男同學(xué),則,男、女同學(xué)的人數(shù)分別為
(2)把名男同學(xué)和名女同學(xué)記為,則選取兩名同學(xué)的基本事件有共種,其中有一名女同學(xué)的有種
選出的兩名同學(xué)中恰有一名女同學(xué)的概率為
(3),
,
第二同學(xué)的實驗更穩(wěn)定
18.(本小題滿分14分)
解:(1)分別是棱中點
|