已知..并且∈(0,).∈(,),求. 三角函數(shù)式的化簡 求值 證明[考綱要求]能運(yùn)用三角函數(shù)公式化簡三角函數(shù)式.在化簡的基礎(chǔ)上會(huì)求某些三角函數(shù)式的值.會(huì)證明比較簡單的三角恒等式. 查看更多

 

題目列表(包括答案和解析)

已知L為過點(diǎn)P(-
3
3
2
,-
3
2
)
且傾斜角為30°的直線,圓C為圓心是坐標(biāo)原點(diǎn)且半徑等于1的圓,Q表示頂點(diǎn)在原點(diǎn)而焦點(diǎn)是(
2
8
,0)
的拋物線,設(shè)A為L和C在第三象限的交點(diǎn),B為C和Q在第四象限的交點(diǎn).
(1)寫出直線L、圓C和拋物線Q的方程,并作草圖.
(2)寫出線段PA、圓弧AB和拋物線上OB一段的函數(shù)表達(dá)式.
(3)設(shè)P′、B′依次為從P、B到x軸的垂足,求由圓弧AB和直線段BB′、B′P′、P′P、PA所包含的面積.

查看答案和解析>>

已知點(diǎn)列B1(1,y1)、B2(2,y2)、…、Bn(n,yn)(n∈N)    順次為一次函數(shù)圖象上高考資源網(wǎng)的點(diǎn),   點(diǎn)列A1(x1,0)、A2(x2,0)、…、An(xn,0)(n∈N)    順次為x軸正半軸上高考資源網(wǎng)的點(diǎn),其中x1=a(0<a<1),    對(duì)于任意n∈N,點(diǎn)An、Bn、An+1構(gòu)成以

    Bn為頂點(diǎn)的等腰三角形。

⑴求{yn}的通項(xiàng)公式,且證明{yn}是等差數(shù)列;

⑵試判斷xn+2-xn是否為同一常數(shù)(不必證明),并求出數(shù)列{xn}的通項(xiàng)公式;

⑶在上高考資源網(wǎng)述等腰三角形AnBnAn+1中,是否存在直角三角形?若有,求出此時(shí)a值;

若不存在, 請(qǐng)說明理由。

查看答案和解析>>

如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦點(diǎn)和上頂點(diǎn)分別為F1、F2、B,我們稱△F1BF2為橢圓C的特征三角形.如果兩個(gè)橢圓的特征三角形是相似的,則稱這兩個(gè)橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.
(1)已知橢圓C1
x2
4
+y2=1
C2
x2
16
+
y2
4
=1
判斷C2與C1是否相似,如果相似則求出C2與C1的相似比,若不相似請(qǐng)說明理由;
(2)寫出與橢圓C1相似且半短軸長為b的橢圓Cb的方程,并列舉相似橢圓之間的三種性質(zhì)(不需證明);
(3)已知直線l:y=x+1,在橢圓Cb上是否存在兩點(diǎn)M、N關(guān)于直線l對(duì)稱,若存在,則求出函數(shù)f(b)=|MN|的解析式.

查看答案和解析>>

(理)已知點(diǎn)B1(1,y1),B2(2,y2),B3(3,y3),…,Bn(n,yn),…(n∈N*)順次為某直線l上的點(diǎn),點(diǎn)A1(x1,0),A2(x2,0),…,An(xn,0),…順次為x軸上的點(diǎn),其中x1=a(0<a≤1).對(duì)于任意的n∈N*,△AnBnAn+1是以Bn為頂點(diǎn)的等腰三角形.

(1)證明xn+2-xn是常數(shù),并求數(shù)列{xn}的通項(xiàng)公式.

(2)若l的方程為y=,試問在△AnBnAn+1(n∈N*)中是否存在直角三角形?若存在,求出a的值;若不存在,請(qǐng)說明理由.

(文)已知函數(shù)f(x)=ax3x2+cx+d(a、c、d∈R)滿足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.

(1)求a、c、d的值.

(2)若h(x)=x2-bx+,解不等式f′(x)+h(x)<0.

(3)是否存在實(shí)數(shù)m,使函數(shù)g(x)=f′(x)-mx在區(qū)間[m,m+2]上有最小值-5?若存在,請(qǐng)求出實(shí)數(shù)m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

已知函數(shù)f(x)=aln(ex+1)-(a+1)x,g(x)=x2-(a-1)x-f(lnx),a∈R,且g(x)在x=1處取得極值.
(1)求a的值;
(2)若對(duì)0≤x≤3,不等式g(x)≤m-8ln2成立,求m的取值范圍;
(3)已知△ABC的三個(gè)頂點(diǎn)A,B,C都在函數(shù)f(x)的圖象上,且橫坐標(biāo)依次成等差數(shù)列,討論△ABC是否為鈍角三角形,是否為等腰三角形.并證明你的結(jié)論.

查看答案和解析>>


同步練習(xí)冊(cè)答案