①點(diǎn)E到平面ABC1D1的距離是,②直線BC與平面ABC1D1所成角等于45°, 查看更多

 

題目列表(包括答案和解析)

正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,E為A1B1的中點(diǎn),則下列五個(gè)命題:
①點(diǎn)E到平面ABC1D1的距離為
1
2
;
②直線BC與平面ABC1D1所成的角為45°;
③空間四邊形ABCD1在正方體六個(gè)面內(nèi)形成的六個(gè)射影平面圖形,其中面積最小值是
1
2
;
④AE與DC1所成的角的余弦值為
3
10
10
;
⑤二面角A-BD1-C的大小為
6

其中真命題是______.(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

正方體ABCD―A1B1C1D1的棱長(zhǎng)為1,EA1B1的中點(diǎn),則下列五個(gè)命題:

①點(diǎn)E到平面ABC1D1的距離為                 ②直線BC與平面ABC1D1所成的角等于45°;

AEDC1所成的角為;       ④二面角A-BD1-C的大小為.其中真命題是              .(寫(xiě)出所有真命題的序號(hào))

 

查看答案和解析>>

正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,EA1B1的中點(diǎn),則下列五個(gè)命題:

①點(diǎn)E到平面ABC1D1的距離為

②直線BC與平面ABC1D1所成的角等于45°;

③空間四邊形ABCD1在正方體六個(gè)面內(nèi)形成六個(gè)射影,其面積的最小值是

AEDC1所成的角為;

⑤二面角A-BD1C的大小為

其中真命題是________.(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

一、選擇題:BCCAC  ABCBC

二、填空題:

11.                 12. 0.94                 13.            14. ②③④

三、解答題:

15解:(1)在二項(xiàng)式中展開(kāi)式的通項(xiàng)

    

依題意  12-3r=0,   r=4.          ……………………5分

常數(shù)項(xiàng)是第5項(xiàng).                   ……… ……………7分

(2)第r項(xiàng)的系數(shù)為

  ∴  ∴   ……10分

∴ 的取值范圍 .          ……14分

16.解:(1)抽出的產(chǎn)品中正品件數(shù)不少于次品件數(shù)的

可能情況有                        ----------2分

從這7件產(chǎn)品中一次性隨機(jī)抽出3件的所有可能有----------4分

      抽出的產(chǎn)品中正品件數(shù)不少于次品件數(shù)的概率為       ----------7分

1

2

3

 

P

(2)

         

----10分

                  -------14分

17解: (1)記“甲投籃1次投進(jìn)”為事件A1,“乙投籃1次投進(jìn)”為事件A2,“丙投籃1次投進(jìn)”為事件A3,“3人都沒(méi)有投進(jìn)”為事件A.則 P(A1)= ,P(A2)= ,P(A3)= ,

∴ P(A) = P()=P()?P()?P()

= [1-P(A1)] ?[1-P (A2)] ?[1-P (A3)]=(1-)(1-)(1-)=          ---------6分

∴3人都沒(méi)有投進(jìn)的概率為 .                                       --------7分

(2)解法一: 隨機(jī)變量ξ的可能值有0,1,2,3), ξ~ B(3, ), ---------9分

P(ξ=k)=C3k()k()3k  (k=0,1,2,3)         ---------11分

 Eξ=np = 3× = .      ---------14分

ξ

0

1

2

3

P

解法二: ξ的概率分布為: 

 

 

 

Eξ=0×+1×+2×+3×=   .

18.解:(1)作AD的中點(diǎn)O,則VO⊥底面ABCD.建立如圖空間直角坐標(biāo)系,并設(shè)正方形邊長(zhǎng)為1,則A(,0,0),B(,1,0),C(-,1,0),D(-,0,0),V(0,0,)                                    ……3分

…4分

……5分

……6分

又AB∩AV=A  ∴AB⊥平面VAD…………………7分

(2)由(Ⅰ)得是面VAD的法向量,設(shè)是面VDB的法向量,則

……10分

,…………………………………12分

又由題意知,面VAD與面VDB所成的二面角,所以其大小為………14分

19.解:(1),,,

猜測(cè):

……(6分)

(2)用數(shù)學(xué)歸納法證明如下:

    ① 當(dāng)時(shí),,,等式成立;……(8分)

 、 假設(shè)當(dāng)時(shí)等式成立,即,

成立,……(9分)

那么當(dāng)時(shí),

   

時(shí)等式也成立.……(13分)

由①,②可得,對(duì)一切正整數(shù)都成立.……(14分)

20.解:(1)     ……(3分)

(2)M到達(dá)(0,n+2)有兩種情況……(5分)

……(8分)

(3)數(shù)列為公比的等比數(shù)列

……(14分)

 


同步練習(xí)冊(cè)答案