4.在一次實(shí)驗(yàn)中.測(cè)得..則y與x 之間的回歸直線方程為 查看更多

 

題目列表(包括答案和解析)

在一次實(shí)驗(yàn)中,測(cè)得(x,y)的四組值為(1,2),(2,3),(3,4),(4,5),則y與x之間的回歸直線方程為( 。
A、
y
=x+1
B、
y
=x+2
C、
y
=2x+1
D、
y
=x-1

查看答案和解析>>

在一次實(shí)驗(yàn)中,測(cè)得(x,y)的四組值分別是A(1,2),B(2,3),C(3,4),D(4,5),則y與x之間的回歸直線方程為(    )

A.y=x+1            B.y=x+2               C.y=2x+1             D.y=x-1

查看答案和解析>>

在一次實(shí)驗(yàn)中,測(cè)得(x,y)的四組值為(1,2),(2,3),(3,4),(4,5),則y與x之間的回歸直線方程為(  )
A.








y
=x+1
B.








y
=x+2
C.








y
=2x+1
D.








y
=x-1

查看答案和解析>>

在一次實(shí)驗(yàn)中,測(cè)得(x,y)的四組值為(1,2),(2,3),(3,4),(4,5),則y與x之間的回歸直線方程為( )
A.=x+1
B.=x+2
C.=2x+1
D.=x-1

查看答案和解析>>

在一次實(shí)驗(yàn)中,測(cè)得(x,y)的四組值為(1,2),(2,3),(3,4),(4,5),則y與x之間的回歸直線方程為( )
A.=x+1
B.=x+2
C.=2x+1
D.=x-1

查看答案和解析>>

 

一、選擇題:本題考查基本知識(shí)和基本運(yùn)算,每小題5分,共60分.

20080528

二、填空題:本題考查基本知識(shí)和基本運(yùn)算,每小題4分,共16分.

13.  14.  15.  16.

三、解答題:本大題共6小題,共74分.

17.解:……4分

   (1)由題知…………………………………………………6分

   (2)由(1)的條件下

      

       由,……………………………………………8分

       得的圖象的對(duì)稱軸是

       則,

       ……………………………………………………10分

       又…………………………………………………12分

18.解:(1)ξ的取值為0、1、2、3、4.

      

       ξ的分布列為

       ξ

0

1

2

3

4

P

       ∴Eξ=+×2+×3+×4=…………………………………………7分

   (2)

       …………………………………9分

       ………………………11分

       的最大值為2.……………………………………………………12分

19.解:由三視圖可知三棱柱A1B1C1ABC為直三棱柱,側(cè)梭長(zhǎng)為2,底面是等腰直角三角

形,AC=BC=1.…………2分

<dfn id="rgw9d"><fieldset id="rgw9d"><object id="rgw9d"></object></fieldset></dfn>

           則C(0,0,0),C1(0,0,2),

           A(1,0,0),B1(0,1,2),A1(1,0,2)

           MA1B1中點(diǎn),

           …………………………4分

       (1)

           ……………………6分

           ∥面AC1M,又∵B1CAC1M

           ∴B1C∥面AC1M.…………………………8分

       (2)設(shè)平面AC1M的一個(gè)法向量為

          

          

           …………………………………………………………10分

          

           則…………………………12分

    20.解:(1)………………2分

           的等差中項(xiàng),

          

           解得q=2或(舍去),………………………………………………4分

           ………………5分

       (2)由(1)得

           當(dāng)n=1時(shí),A1=2,B1=(1+1)2=4,A1<B1;

           當(dāng)n=2時(shí),A2=6,B2=(2+1)2=9,A2<B2;

           當(dāng)n=3時(shí),A3=14,B3=(3+1)2=16,A3<B3;

           當(dāng)n=4時(shí),A4=30,B4=(4+1)2=25,A4>B4

           由上可猜想,當(dāng)1≤n≤3時(shí),An<Bn;當(dāng)n≥4時(shí),An>Bn.……………………8分

           下面用數(shù)學(xué)歸納法給出證明:

           ①當(dāng)n=4時(shí),已驗(yàn)證不等式成立.

           ②假設(shè)n=kk≥4)時(shí),Ak>Bk.成立,即,

          

           即當(dāng)n=k+1時(shí)不等式也成立,

           由①②知,當(dāng)

           綜上,當(dāng)時(shí),An<Bn;當(dāng)

     

     

    21.解:(1)設(shè).

           由題意得……………………2分

           ∵m>1,∴軌跡C是中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上的橢圓(除去x軸上的兩項(xiàng)點(diǎn)),其

    中長(zhǎng)軸長(zhǎng)為2,短軸長(zhǎng)為2.………………………………………………4分

       (2)當(dāng)m=時(shí),曲線C的方程為

           由………………6分

           令

           此時(shí)直線l與曲線C有且只有一個(gè)公共點(diǎn).………………………………8分

       (3)直線l方程為2x-y+3=0.

           設(shè)點(diǎn)表示P到點(diǎn)(1,0)的距離,d2表示P到直線x=2的距離,

           則

           …………………………10分

           令

           則

           令……………………………………………………12分

          

          

           ∴的最小值等于橢圓的離心率.……………………………………14分

    22.(1)由已知

           ,

          

           …………………………………………………………2分

           又當(dāng)a=8時(shí),

          

           上單調(diào)遞減.……………………………………………………4分

       (2)

          

           ……………………6分

          

          

          

          

          

    ………………………………………………8分

       (3)設(shè)

           且

           由(1)知

          

           ∴△ABC為鈍角三角形,且∠B為鈍角.…………………………………………11分

           若△ABC為等腰三角形,則|AB|=|BC|,

          

          

           此與(2)矛盾,

           ∴△ABC不可能為等腰三角形.………………………………………………14分

     

     


    同步練習(xí)冊(cè)答案
    <style id="rgw9d"><strong id="rgw9d"><abbr id="rgw9d"></abbr></strong></style>