(Ⅱ)由正弦定理.已知條件化為.?????????????????????????????????????????????????????? 8分 查看更多

 

題目列表(包括答案和解析)

(2012•普陀區(qū)一模)給出問題:已知△ABC滿足a•cosA=b•cosB,試判斷△ABC的形狀,某學(xué)生的解答如下:
(i)a•
b2+c2-a2
2bc
=b•
a2+c2-b2
2ac
?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
故△ABC是直角三角形.
(ii)設(shè)△ABC外接圓半徑為R,由正弦定理可得,原式等價(jià)于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
故△ABC是等腰三角形.
綜上可知,△ABC是等腰直角三角形.
請問:該學(xué)生的解答是否正確?若正確,請?jiān)谙旅鏅M線中寫出解題過程中主要用到的思想方法;若不正確,請?jiān)谙旅鏅M線中寫出你認(rèn)為本題正確的結(jié)果
等腰或直角三角形
等腰或直角三角形

查看答案和解析>>

給出問題:已知滿足,試判定的形狀.某學(xué)生的解答如下:

解:(i)由余弦定理可得,

,

,

是直角三角形.

(ii)設(shè)外接圓半徑為.由正弦定理可得,原式等價(jià)于

,

是等腰三角形.

綜上可知,是等腰直角三角形.

請問:該學(xué)生的解答是否正確?若正確,請?jiān)谙旅鏅M線中寫出解題過程中主要用到的思想方法;若不正確,請?jiān)谙旅鏅M線中寫出你認(rèn)為本題正確的結(jié)果.           .

 

查看答案和解析>>

設(shè)△ABC的內(nèi)角A、B、C所對的邊分別為a、b、c,已知a=1,b=2,cosC=. (1)求△ABC的周長;       (2)求cos(AC)的值.

【解析】(1)借助余弦定理求出邊c,直接求周長即可.(2)根據(jù)兩角差的余弦公式需要求sinC,sinA,cosA,由正弦定理即可求出sinA,進(jìn)而可求出cosA.sinC可由cosA求出,問題得解.

 

查看答案和解析>>

給出問題:已知△ABC滿足a•cosA=b•cosB,試判斷△ABC的形狀,某學(xué)生的解答如下:
(i)a•?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
故△ABC是直角三角形.
(ii)設(shè)△ABC外接圓半徑為R,由正弦定理可得,原式等價(jià)于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
故△ABC是等腰三角形.
綜上可知,△ABC是等腰直角三角形.
請問:該學(xué)生的解答是否正確?若正確,請?jiān)谙旅鏅M線中寫出解題過程中主要用到的思想方法;若不正確,請?jiān)谙旅鏅M線中寫出你認(rèn)為本題正確的結(jié)果   

查看答案和解析>>

已知函數(shù).]

(1)求函數(shù)的最小值和最小正周期;

(2)設(shè)的內(nèi)角、、的對邊分別為,,且,,

,求的值.

【解析】第一問利用

得打周期和最值

第二問

 

,由正弦定理,得,①  

由余弦定理,得,即,②

由①②解得

 

查看答案和解析>>


同步練習(xí)冊答案