又.得 即.解得:② 查看更多

 

題目列表(包括答案和解析)

解析:依題意得f(x)的圖象關(guān)于直線x=1對(duì)稱,f(x+1)=-f(x-1),f(x+2)=-f(x),f(x+4)=-f(x+2)=f(x),即函數(shù)f(x)是以4為周期的函數(shù).由f(x)在[3,5]上是增函數(shù)與f(x)的圖象關(guān)于直線x=1對(duì)稱得,f(x)在[-3,-1]上是減函數(shù).又函數(shù)f(x)是以4為周期的函數(shù),因此f(x)在[1,3]上是減函數(shù),f(x)在[1,3]上的最大值是f(1),最小值是f(3).

答案:A

查看答案和解析>>

中,已知,;

(1)求的值;(2)若,求的值;

【解析】第一問中,利用

第二問中 

再有余弦定理解得。

解:(1)               ……4分

   (2)

       ……8分

  即 

 

查看答案和解析>>

如圖,分別是橢圓+=1()的左、右焦點(diǎn),是橢圓的頂點(diǎn),是直線與橢圓的另一個(gè)交點(diǎn),=60°.

(Ⅰ)求橢圓的離心率;

(Ⅱ)已知△的面積為40,求的值.

【解析】 (Ⅰ)由題=60°,則,即橢圓的離心率為。

(Ⅱ)因△的面積為40,設(shè),又面積公式,又直線

又由(Ⅰ)知,聯(lián)立方程可得,整理得,解得,,所以,解得。

 

查看答案和解析>>

已知為第三象限角,

(1)化簡(jiǎn)

(2)若,求的值   (本小題滿分10分)

【解析】第一問利用

第二問∵ ∴     從而,從而得到三角函數(shù)值。

解:(1)

     

(2)∵

       從而    ………………………8分

為第三象限角

    ………………………10分

的值為

 

查看答案和解析>>

仔細(xì)閱讀下面問題的解法:
設(shè)A=[0,1],若不等式21-x-a>0在A上有解,求實(shí)數(shù)a的取值范圍.
解:由已知可得  a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上單調(diào)遞減,f(x)max=f(0)=2
∴a<2即為所求.
學(xué)習(xí)以上問題的解法,解決下面的問題:
(1)已知函數(shù)f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數(shù)及反函數(shù)的定義域A;
(2)對(duì)于(1)中的A,設(shè)g(x)=
10-x
10+x
x∈A,試判斷g(x)的單調(diào)性;(不證)
(3)又若B={x|
10-x
10+x
>2x+a-5},若A∩B≠Φ,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>


同步練習(xí)冊(cè)答案