15. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點(diǎn).

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項公式an

   (Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:;

   (Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運(yùn)動員進(jìn)行定點(diǎn)投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.

   (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

   (2)當(dāng)時,求弦長|AB|的取值范圍.

查看答案和解析>>

一、選擇題(本大題共8小題,每小題5分,共40分)

1.B   2. C  3. D    4.C   5.B   6.D   7.A   8. B.

 

二、填空題(本大題共6小題,每小題5分,共30分)

9.; 10.(-1,2); 11.0;  12.(或);

13.(1);(2)16;(3).

三、解答題(本大題共6小題,共80分)

14.(本小題滿分12分)

解:(Ⅰ)∵

當(dāng)時,其圖象如右圖所示.---4分

(Ⅱ)函數(shù)的最小正周期是,其單調(diào)遞增區(qū)間是;由圖象可以看出,當(dāng)時,該函數(shù)的最大值是.--------------7分

(Ⅲ)若x是△ABC的一個內(nèi)角,則有,∴

,得

 ∴,故△ABC為直角三角形. --------------12分

15.(本小題滿分12分)

解:(Ⅰ)

       --------6分

(Ⅱ)當(dāng)時,

 ----------12分

 

16.(本小題滿分14分)

解:(Ⅰ)該幾何體的直觀圖如圖1所示,它是有一條

側(cè)棱垂直于底面的四棱錐. 其中底面ABCD是邊長為6的

正方形,高為CC1=6,故所求體積是

       ------------------------4分

 (Ⅱ)依題意,正方體的體積是原四棱錐體積的3倍,

故用3個這樣的四棱錐可以拼成一個棱長為6的正方體,

其拼法如圖2所示. ------------------------6分

   證明:∵面ABCD、面ABB1A1、面AA1D1D為全等的

正方形,于是

  故所拼圖形成立.---8分

(Ⅲ)方法一:設(shè)B1E,BC的延長線交于點(diǎn)G,

 連結(jié)GA,在底面ABC內(nèi)作BH⊥AG,垂足為H,

連結(jié)HB1,則B1H⊥AG,故∠B1HB為平面AB1E與

平面ABC所成二面角或其補(bǔ)角的平面角. --------10分

  在Rt△ABG中,,則

,

,故平面AB1E與平面ABC所成二面角的余弦值為.---14分

   方法二:以C為原點(diǎn),CD、CB、CC1所在直線分別為x、y、z軸建立直角坐標(biāo)系(如圖3),∵正方體棱長為6,則E(0,0,3),B1(0,6,6),A(6,6,0).

 設(shè)向量n=(x,y,z),滿足n⊥,n⊥

于是,解得.       --------------------12分

  取z=2,得n=(2,-1,2). 又(0,0,6),

故平面AB1E與平面ABC所成二面角的余弦值為. ----------------14分

 

17.(本小題滿分14分)

解:分別記該考生考上第1、2、3批分?jǐn)?shù)線為事件A、B、C,被相應(yīng)志愿錄取為事件Ai、Bi、Ci,(i=a、b), 則以上各事件相互獨(dú)立.  -------------------------------------2分

(Ⅰ)“該考生被第2批b志愿錄取”包括上第1批分?jǐn)?shù)線和僅上第2批分?jǐn)?shù)線兩種情況,故所求概率為

     

.  -----------------------------------------------------------------------------------6分

(Ⅱ)設(shè)該考生所報志愿均未錄取的概率為,則

           

          

         .

     ∴該考生能被錄取的概率為. ------------10分

<strike id="wbzrm"></strike>

    表 二

    批次

    a

    b

    第2批

    0.9

    0.05

    第3批

    0.048

    0.0020

    從表中可以看出,該考生被第2批a志愿錄取的概率最大,故最有可能在第2批a志愿被錄取. ------14分

     

    18.(本小題滿分14分)

    解:(Ⅰ)∵,當(dāng)時,.

         ∴在[1,3]上是增函數(shù).---------------------------------3分

         ∴當(dāng)時,,即 -2≤≤26.

          ∴存在常數(shù)M=26,使得,都有≤M成立.

           故函數(shù)是[1,3]上的有界函數(shù).---------------------------6分

    (Ⅱ)∵. 由≤1,得≤1

       ∴ 

           令,則.

          當(dāng)時,有,

    在[0,+∞上單調(diào)遞減.   -------------------------------10分

    故當(dāng)t=0 時,有

    ,當(dāng)t→+∞時,→0,

    ,從而有≤0,且.  ∴0≤a≤1;                               故所求a的取值范圍為0≤a≤1.---------------------------------------------14分

     

    19.(本小題滿分14分)

    解:(Ⅰ)易知,橢圓的半焦距為:,

     又拋物線的準(zhǔn)線為:.

    設(shè)雙曲線M的方程為,依題意有,

    ,又.

    ∴雙曲線M的方程為. ------------------------4分

    (Ⅱ)設(shè)直線與雙曲線M的交點(diǎn)為、兩點(diǎn)

    聯(lián)立方程組 消去y得 

    、兩點(diǎn)的橫坐標(biāo)是上述方程的兩個不同實(shí)根, ∴

    ,從而有

    ,.

    .

    ① 若,則有 ,即 .

    ∴當(dāng)時,使得. -----------------------------8分

    ② 若存在實(shí)數(shù),使A、B兩點(diǎn)關(guān)于直線對稱,則必有 ,

    因此,當(dāng)m=0時,不存在滿足條件的k;------------------------------------10分

    當(dāng)時,由

      

    ∵A、B中點(diǎn)在直線上,

    代入上式得

    ;又, ∴

    代入并注意到,得 .

    ∴當(dāng)時,存在實(shí)數(shù),使A、B兩點(diǎn)關(guān)于直線對稱.--14分

    如上各題若有其它解法,請評卷老師酌情給分.

     

     

     

     


    同步練習(xí)冊答案

        <samp id="wbzrm"><del id="wbzrm"></del></samp>