①數(shù)列的公差 ②一定小于 查看更多

 

題目列表(包括答案和解析)

在等差數(shù)列{an}中,a4S4=-14,S5-a5=-14,其中Sn是數(shù)列{an}的前n項(xiàng)之和,曲線Cn的方程是
x2
|an|
+
y2
4
=1,直線l的方程是y=x+3.
(1)求數(shù)列{an}的通項(xiàng)公式;   
(2)判斷Cn與l的位置關(guān)系;
(3)當(dāng)直線l與曲線Cn相交于不同的兩點(diǎn)An,Bn時(shí),令Mn=(|an|+4)|AnBn|,求Mn的最小值.
(4)對(duì)于直線l和直線外的一點(diǎn)P,用“l(fā)上的點(diǎn)與點(diǎn)P距離的最小值”定義點(diǎn)P到直線l的距離與原有的點(diǎn)到直線距離的概念是等價(jià)的.若曲線Cn與直線l不相交,試以類似的方式給出一條曲線Cn與直線l間“距離”的定義,并依照給出的定義,在Cn中自行選定一個(gè)橢圓,求出該橢圓與直線l的“距離”.

查看答案和解析>>

在等差數(shù)列{an}中,a4S4=-14,S5-a5=-14,其中Sn是數(shù)列{an}的前n項(xiàng)之和,曲線Cn的方程是+=1,直線l的方程是y=x+3.
(1)求數(shù)列{an}的通項(xiàng)公式;   
(2)判斷Cn與l的位置關(guān)系;
(3)當(dāng)直線l與曲線Cn相交于不同的兩點(diǎn)An,Bn時(shí),令Mn=(|an|+4)|AnBn|,求Mn的最小值.
(4)對(duì)于直線l和直線外的一點(diǎn)P,用“l(fā)上的點(diǎn)與點(diǎn)P距離的最小值”定義點(diǎn)P到直線l的距離與原有的點(diǎn)到直線距離的概念是等價(jià)的.若曲線Cn與直線l不相交,試以類似的方式給出一條曲線Cn與直線l間“距離”的定義,并依照給出的定義,在Cn中自行選定一個(gè)橢圓,求出該橢圓與直線l的“距離”.

查看答案和解析>>

6、等差數(shù)列{an}的公差d不為0,Sn是其前n項(xiàng)和,給出下列命題:
①若d<0,且S3=S8,則S5和S6都是{Sn}中的最大項(xiàng);
②給定n,對(duì)于一切k∈N*(k<n),都有an-k+an+k=2an
③若d>0,則{Sn}中一定有最小的項(xiàng);
④存在k∈N*,使ak-ak+1和ak-ak-1同號(hào).
其中正確命題的個(gè)數(shù)為( 。

查看答案和解析>>

等差數(shù)列{an}的公差d不為0,Sn是其前n項(xiàng)和,給出下列命題:

①若d<0,且S3=S8,則S5和S6都是{Sn}中的最大項(xiàng);

②給定n,對(duì)于一切,都有;

③若d>0,則{Sn}中一定有最小的項(xiàng);

④存在,使同號(hào)。

其中正確命題的個(gè)數(shù)為

A.4                B.3                C.2                D.1

 

查看答案和解析>>

等差數(shù)列{an}的公差d不為0,Sn是其前n項(xiàng)和,給出下列命題:
①若d<0,且S3=S8,則S5和S6都是{Sn}中的最大項(xiàng);
②給定n,對(duì)于一切k∈N*(k<n),都有an-k+an+k=2an;
③若d>0,則{Sn}中一定有最小的項(xiàng);
④存在k∈N*,使ak-ak+1和ak-ak-1同號(hào).
其中正確命題的個(gè)數(shù)為(  )
A.4B.3C.2D.1

查看答案和解析>>

一、選擇題

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

B

B

A

B

D

B

C

C

A

B

C

A

C

D

C

 

二、填空題

16.;17.;18等邊三角形;19.3;20.①②④

三、解答題

21解(I)由題意及正弦定理,得  ①,

  ②,………………1分

兩式相減,得.  …………………2分

(II)由的面積,得,……4分

由余弦定理,得                            ……………5分

所以. …………6分

22 .解:(Ⅰ)      ……2分

(Ⅱ)   

∴數(shù)列從第10項(xiàng)開(kāi)始小于0                ……4分

(Ⅲ)

23解:(Ⅰ)由

即:

…………2分

…………4分

(Ⅱ)利用余弦定理可解得: 

      ,∵,故有…………7分

24解:(I)設(shè)等比數(shù)列{an}的公比為q, 則q≠0, a2= = , a4=a3q=2q

  所以 + 2q= ,     解得q1= , q2= 3,            …………1分

  當(dāng)q1=, a1=18.所以 an=18×( )n-1= = 2×33-n.

  當(dāng)q=3時(shí), a1= ,所以an=×=2×3n-5.         …………3分

(II)由(I)及數(shù)列公比大于,得q=3,an=2×3n-5 ,…………4分

     ,

(常數(shù)),  

所以數(shù)列為首項(xiàng)為-4,公差為1的等差數(shù)列,……6分  

.     …………7分

25.解:(Ⅰ)  n=1時(shí)      ∴

n=2時(shí)         ∴

n=3時(shí)     ∴       …………2分

(Ⅱ)∵   ∴

兩式相減得:   即

也即

    ∴  即是首項(xiàng)為2,公差為4的等差數(shù)列

          …………5分

(Ⅲ)

   …………7分

對(duì)所有都成立   ∴  即

故m的最小值是10       …………8分

 

 


同步練習(xí)冊(cè)答案