在等比數(shù)列中...成等差數(shù)列.則公比等于 查看更多

 

題目列表(包括答案和解析)

15、在等比數(shù)列{an}中,已知a1、a2,a4成等差數(shù)列,則公比q=
1

查看答案和解析>>

在等比數(shù)列{an}中,a5、a4、a6成等差數(shù)列,則公比q等于( 。

查看答案和解析>>

在等差數(shù)列中,,、、成等比數(shù)列,求數(shù)列的前n項(xiàng)和.

 

查看答案和解析>>

在等比數(shù)列{an}中,a5、a4、a6成等差數(shù)列,則公比q等于( 。
A.1或2B.-1或-2C.1或-2D.-1或2

查看答案和解析>>

在等差數(shù)列中,公差的等比中項(xiàng),已知數(shù)列、、成等比數(shù)列,求數(shù)列{}的通項(xiàng)

查看答案和解析>>

一、選擇題(本大題共10小題,每小題5分,共50分)

   1~5  C B D C D     6~10  A C A B B

二、填空題(本大題共6小題,每小題4分,共24分)

11. ;      12 . ;       13.  31;  

14. ;       15. ;             16.-,0 .

三、解答題(本大題共6小題,共76分)

17.(本題滿(mǎn)分13分)

解:(Ⅰ)當(dāng)a=2時(shí),A=,          …………………………2分

B=                            …………………………4分

∴ AB=                      …………………………6分

(Ⅱ)∵(a2+1)-a=(a-)2>0,即a2+1>a

∴B={x|a<x<a2+1}                            ……………………7分

①當(dāng)3a+1=2,即a=時(shí)A=Φ,不存在a使BA      ……………………8分

②當(dāng)3a+1>2,即a>時(shí)A={x|2<x<3a+1}

由BA得:2≤a≤3             …………………10分

③當(dāng)3a+1<2,即a<時(shí)A={x|3a+1<x<2}

由BA得-1≤a≤-                  …………………12分

綜上,a的范圍為:[-1,-]∪[2,3]                        …………………13分

18.(本題滿(mǎn)分13分)

解:(Ⅰ)由………4分

的值域?yàn)閇-1,2]           ……………………7分

(Ⅱ)∵

                   ………………10分

………………13分

19. (本題滿(mǎn)分13分)

解:(Ⅰ) ,              ……………………2分

設(shè)在公共點(diǎn)處的切線(xiàn)相同

由題意 

                             ……………………4分

得:,或(舍去) 

即有                 ……………………6分

(Ⅱ)設(shè),……………………7分

            ……………………9分

x時(shí)<0,x>0

為減函數(shù),在為增函數(shù),             ……………………11分

于是函數(shù)上的最小值是:F(a)=f(a)-g(a)=0     ……………………12分

故當(dāng)時(shí),有,

所以,當(dāng)時(shí),                            ……………………13分

20. (本題滿(mǎn)分13分)

解:(Ⅰ)選取的5只恰好組成完整“奧運(yùn)吉祥物”的概率

                         ………………5分

(Ⅱ)                         …………………6分           

                                      …………10分

ξ的分布列為:

ξ

10

8

6

4

P

                                                                                              

                         …………13分

21.(本題滿(mǎn)分12分)

解:(Ⅰ)∵, ∴     …………………………1分

由y=解得:              …………………………2分

                    ………………………3分

(Ⅱ)由題意得:         …………………………4分

                   

∴{}是以=1為首項(xiàng),以4為公差的等差數(shù)列. …………………………6分

,∴.          ………………………7分

(Ⅲ)∴………8分

,∴ {bn}是一單調(diào)遞減數(shù)列.      ………………………10分

,要使,則 ,∴

又kÎN*  ,∴k³8 ,∴kmin=8

即存在最小的正整數(shù)k=8,使得                 ……………………12分

22.(本題滿(mǎn)分12分)

解:(Ⅰ)由余弦定理得:   ……1分

即16=

所以

  ……………………………………………4分

(當(dāng)動(dòng)點(diǎn)P與兩定點(diǎn)A,B共線(xiàn)時(shí)也符合上述結(jié)論)

所以動(dòng)點(diǎn)P的軌跡為以A,B為焦點(diǎn),實(shí)軸長(zhǎng)為的雙曲線(xiàn)

所以,軌跡G的方程為        …………………………………………6分

(Ⅱ)假設(shè)存在定點(diǎn)C(m,0),使為常數(shù).

①當(dāng)直線(xiàn)l不與x軸垂直時(shí),設(shè)直線(xiàn)l的方程為

   …………………………………………7分

由題意知,

設(shè),則,  …………………8分

于是

             ………………9分

要是使得 為常數(shù),當(dāng)且僅當(dāng),此時(shí) ………………11分

②當(dāng)直線(xiàn)l與x軸垂直時(shí),,當(dāng)時(shí).

 故,在x軸上存在定點(diǎn)C(1,0) ,使得 為常數(shù). …………………………12分

 

 

 


同步練習(xí)冊(cè)答案