題目列表(包括答案和解析)
π | 2 |
(本題滿分12分) 已知函數(shù).
(Ⅰ) 求f 1(x);
(Ⅱ) 若數(shù)列{an}的首項為a1=1,(nÎN+),求{an}的通項公式an;
(Ⅲ) 設(shè)bn=(32n-8),求數(shù)列{bn}的前項和Tn
(本題滿分12分)已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線不過第四象限且斜率為3,又坐標原點到切線的距離為,若x=時,y=f(x)有極值.
(1)求a、b、c的值;w.w.w.k.s.5.u.c.o.m
(2)求y=f(x)在[-3,1]上的最大值和最小值.
(本題滿分12分) 已知數(shù)列{an}滿足
(Ⅰ)求數(shù)列的前三項:a1,a2,a3;
(Ⅱ)求證:數(shù)列{}為等差數(shù)列. w.w.w.k.s.5.u.c.o.m
(Ⅲ)求數(shù)列{an}的前n項和Sn.
(本題滿分12分) 已知函數(shù)
(Ⅰ)當的 單調(diào)區(qū)間;
(Ⅱ)當的取值范圍。一、選擇題(本大題共10小題,每小題5分,共50分)
1~
二、填空題(本大題共6小題,每小題4分,共24分)
11. ; 12 . ; 13. 31;
14. ; 15. ; 16.-,0 .
三、解答題(本大題共6小題,共76分)
17.(本題滿分13分)
解:(Ⅰ)當a=2時,A=, …………………………2分
B= …………………………4分
∴ AB= …………………………6分
(Ⅱ)∵(a2+1)-a=(a-)2+>0,即a2+1>a
∴B={x|a<x<a2+1} ……………………7分
①當
②當
由BA得:2≤a≤3 …………………10分
③當
由BA得-1≤a≤- …………………12分
綜上,a的范圍為:[-1,-]∪[2,3] …………………13分
18.(本題滿分13分)
解:(Ⅰ)由………4分
∵
∴的值域為[-1,2] ……………………7分
(Ⅱ)∵
∴
∴ ………………10分
∴………………13分
19. (本題滿分13分)
解:(Ⅰ) ,, ……………………2分
設(shè)與在公共點處的切線相同
由題意,
即 ……………………4分
由得:,或(舍去)
即有 ……………………6分
(Ⅱ)設(shè),……………………7分
則 ……………………9分
x時<0,x>0
∴在為減函數(shù),在為增函數(shù), ……………………11分
于是函數(shù)在上的最小值是:F(a)=f(a)-g(a)=0 ……………………12分
故當時,有,
所以,當時, ……………………13分
20. (本題滿分13分)
解:(Ⅰ)選取的5只恰好組成完整“奧運吉祥物”的概率
………………5分
(Ⅱ) …………………6分
…………10分
ξ的分布列為:
ξ
10
8
6
4
P
…………13分
21.(本題滿分12分)
解:(Ⅰ)∵, ∴ …………………………1分
由y=解得: …………………………2分
∴ ………………………3分
(Ⅱ)由題意得: …………………………4分
∴
∴{}是以=1為首項,以4為公差的等差數(shù)列. …………………………6分
∴,∴. ………………………7分
(Ⅲ)∴………8分
則
∴
∴,∴ {bn}是一單調(diào)遞減數(shù)列. ………………………10分
∴,要使,則 ,∴
又kÎN* ,∴k³8 ,∴kmin=8
即存在最小的正整數(shù)k=8,使得 ……………………12分
22.(本題滿分12分)
解:(Ⅰ)由余弦定理得: ……1分
即16=
==
所以,
即 ……………………………………………4分
(當動點P與兩定點A,B共線時也符合上述結(jié)論)
所以動點P的軌跡為以A,B為焦點,實軸長為的雙曲線
所以,軌跡G的方程為 …………………………………………6分
(Ⅱ)假設(shè)存在定點C(m,0),使為常數(shù).
①當直線l不與x軸垂直時,設(shè)直線l的方程為
…………………………………………7分
由題意知,
設(shè),則, …………………8分
于是
∴
= ………………9分
=
要是使得 為常數(shù),當且僅當,此時 ………………11分
②當直線l與x軸垂直時,,當時.
故,在x軸上存在定點C(1,0) ,使得 為常數(shù). …………………………12分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com