∴0<≤. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=lnx,0<a<b<c<1,則,的大小關(guān)系是  

 

查看答案和解析>>

(本題滿分12分)已知A(2,0),B(0,2),C),且0<<.

   (1)若的夾角;

   (2)若的值.

查看答案和解析>>

已知0<a<1,b<-1,函數(shù)f(x)= ax+b的圖象不經(jīng)過(guò)( 。

A.第一象限          B.第二象限         C.第三象限          D.第四象限

 

查看答案和解析>>

 已知三次函數(shù)y = f (x)過(guò)點(diǎn)(–1,0),且f ′(x) = (x + 1)2,將y = f (x)的圖象向右平移一個(gè)單位,再將各點(diǎn)的縱坐標(biāo)變?yōu)樵瓉?lái)的3倍得函數(shù)y = g (x)的圖象,函數(shù)y = h (x)與y = g (x)的圖象關(guān)于點(diǎn)M(2,0)對(duì)稱(chēng).

(1)求y = h (x)的解析式;        

(2)若直線x = t (0<t<4)將函數(shù)y = h (x)的圖象與兩坐標(biāo)軸圍成的圖形的面積二等分,求t的值.

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

下表表示yx的函數(shù),則函數(shù)的值域是(  )

x

0<x<5

5≤x<10

10≤x<15

15≤x≤20

y

2

3

4

5

A.[2,5]               B.N           C.(0,20]               D.{2,3,4,5}

 

查看答案和解析>>

    例10  為促進(jìn)個(gè)人住房商品化的進(jìn)程,我國(guó)1999年元月公布了個(gè)人住房公積金貸款利率和商業(yè)性貸款利率如下:

 

貸款期(年數(shù))

公積金貸款月利率(‰)

商業(yè)性貸款月利率(‰)

……

11

12

13

14

15

……

……

4.365

4.455

4.545

4.635

4.725

……

……

5.025

5.025

5.025

5.025

5.025

……


    汪先生家要購(gòu)買(mǎi)一套商品房,計(jì)劃貸款25萬(wàn)元,其中公積金貸款10萬(wàn)元,分十二年還清;商業(yè)貸款15萬(wàn)元,分十五年還清.每種貸款分別按月等額還款,問(wèn):
    (1)汪先生家每月應(yīng)還款多少元?
    (2)在第十二年底汪先生家還清了公積金貸款,如果他想把余下的商業(yè)貸款也一次性還清;那么他家在這個(gè)月的還款總數(shù)是多少?
    (參考數(shù)據(jù):1.004455144=1.8966,1.005025144=2.0581,1.005025180=2.4651)


   講解  設(shè)月利率為r,每月還款數(shù)為a元,總貸款數(shù)為A元,還款期限為n月
  第1月末欠款數(shù) A(1+r)-a
  第2月末欠款數(shù) [A(1+r)-a](1+r)-a= A(1+r)2-a (1+r)-a
    第3月末欠款數(shù) [A(1+r)2-a (1+r)-a](1+r)-a
           =A(1+r)3-a (1+r)2-a(1+r)-a
  ……
  第n月末欠款數(shù) 
    得:                                  

  對(duì)于12年期的10萬(wàn)元貸款,n=144,r=4.455‰
  ∴
  對(duì)于15年期的15萬(wàn)元貸款,n=180,r=5.025‰
  ∴
  由此可知,先生家前12年每月還款942.37+1268.22=2210.59元,后3年每月還款1268.22元.
  (2)至12年末,先生家按計(jì)劃還款以后還欠商業(yè)貸款
   
  其中A=150000,a=1268.22,r=5.025‰  ∴X=41669.53
    再加上當(dāng)月的計(jì)劃還款數(shù)2210.59元,當(dāng)月共還款43880.12元.   

    需要提及的是,本題的計(jì)算如果不許用計(jì)算器,就要用到二項(xiàng)展開(kāi)式進(jìn)行估算,這在2002年全國(guó)高考第(12)題中得到考查.

    例11  醫(yī)學(xué)上為研究傳染病傳播中病毒細(xì)胞的發(fā)展規(guī)律及其預(yù)防,將病毒細(xì)胞注入一只小白鼠體內(nèi)進(jìn)行實(shí)驗(yàn),經(jīng)檢測(cè),病毒細(xì)胞的增長(zhǎng)數(shù)與天數(shù)的關(guān)系記錄如下表. 已知該種病毒細(xì)胞在小白鼠體內(nèi)的個(gè)數(shù)超過(guò)108的時(shí)候小白鼠將死亡.但注射某種藥物,將可殺死其體內(nèi)該病毒細(xì)胞的98%.

(1)為了使小白鼠在實(shí)驗(yàn)過(guò)程中不死亡,第一次最遲應(yīng)在何時(shí)注射該種藥物?(精確到天)

(2)第二次最遲應(yīng)在何時(shí)注射該種藥物,才能維持小白鼠的生命?(精確到天)

  • <samp id="3k8xh"><strong id="3k8xh"></strong></samp>
    <form id="3k8xh"><progress id="3k8xh"></progress></form>
  • <sup id="3k8xh"><font id="3k8xh"><strike id="3k8xh"></strike></font></sup>
  • 天數(shù)t

    病毒細(xì)胞總數(shù)N

    1

    2

    3

    4

    5

    6

    7

    1

    2

    4

    8

    16

    32

    64

     

     

     

     

     

     

     

     

    講解 (1)由題意病毒細(xì)胞關(guān)于時(shí)間n的函數(shù)為, 則由

    兩邊取對(duì)數(shù)得    n27.5,

       即第一次最遲應(yīng)在第27天注射該種藥物.

    (2)由題意注入藥物后小白鼠體內(nèi)剩余的病毒細(xì)胞為,

    再經(jīng)過(guò)x天后小白鼠體內(nèi)病毒細(xì)胞為,

    由題意≤108,兩邊取對(duì)數(shù)得

    ,

         故再經(jīng)過(guò)6天必須注射藥物,即第二次應(yīng)在第33天注射藥物.

        本題反映的解題技巧是“兩邊取對(duì)數(shù)”,這對(duì)實(shí)施指數(shù)運(yùn)算是很有效的.

         例12 有一個(gè)受到污染的湖泊,其湖水的容積為V立方米,每天流出湖泊的水量都是r立方米,現(xiàn)假設(shè)下雨和蒸發(fā)正好平衡,且污染物質(zhì)與湖水能很好地混合,用g(t)表示某一時(shí)刻t每立方米湖水所含污染物質(zhì)的克數(shù),我們稱(chēng)為在時(shí)刻t時(shí)的湖水污染質(zhì)量分?jǐn)?shù),已知目前污染源以每天p克的污染物質(zhì)污染湖水,湖水污染質(zhì)量分?jǐn)?shù)滿足關(guān)系式g(t)= +[g(0)- ]?e(p≥0),其中,g(0)是湖水污染的初始質(zhì)量分?jǐn)?shù).

    (1)當(dāng)湖水污染質(zhì)量分?jǐn)?shù)為常數(shù)時(shí),求湖水污染的初始質(zhì)量分?jǐn)?shù); 

    (2)求證:當(dāng)g(0)< 時(shí),湖泊的污染程度將越來(lái)越嚴(yán)重; 

    (3)如果政府加大治污力度,使得湖泊的所有污染停止,那么需要經(jīng)過(guò)多少天才能使湖水的污染水平下降到開(kāi)始時(shí)污染水平的5%?

     講解(1)∵g(t)為常數(shù),  有g(shù)(0)-=0, ∴g(0)=   .                      

    (2) 我們易證得0<t1<t2, 則

    g(t1)-g(t2)=[g(0)- ]e-[g(0)- ]e=[g(0)- ][e-e]=[g(0)- ,

    ∵g(0)?<0,t1<t2,e>e,

    ∴g(t1)<g(t2)    .                                                      

    故湖水污染質(zhì)量分?jǐn)?shù)隨時(shí)間變化而增加,污染越來(lái)越嚴(yán)重.                

    (3)污染停止即P=0,g(t)=g(0)?e,設(shè)經(jīng)過(guò)t天能使湖水污染下降到初始污染水平5%即g(t)=5% g(0)?

    =e,∴t= ln20,

    故需要 ln20天才能使湖水的污染水平下降到開(kāi)始時(shí)污染水平的5%.

    高考應(yīng)用性問(wèn)題的熱門(mén)話題是增減比率型和方案優(yōu)化型, 另外,估測(cè)計(jì)算型和信息遷移型也時(shí)有出現(xiàn).當(dāng)然,數(shù)學(xué)高考應(yīng)用性問(wèn)題關(guān)注當(dāng)前國(guó)內(nèi)外的政治,經(jīng)濟(jì),文化, 緊扣時(shí)代的主旋律,凸顯了學(xué)科綜合的特色,是歷年高考命題的一道亮麗的風(fēng)景線.

     


    同步練習(xí)冊(cè)答案
    <table id="3k8xh"></table>