題目列表(包括答案和解析)
已知函數(shù).
(1)函數(shù)在區(qū)間(0,+∞)_k是增函數(shù)還是增函數(shù)?證明你的結(jié)論;
(2)當(dāng)>0時,>恒成立,求正整數(shù)的最大值.
給出下列命題:
①a,b都為正數(shù)時,不等式a+b≥2才成立。
②y=x+的最小值為2。
③y=sinx+()的最小值為2.
④當(dāng)x>0時,y=x2+16x≥2,當(dāng)x2=16x時,即x=16,y取最小值512。
其中錯誤的命題是 。
給出下列命題:
①a,b都為正數(shù)時,不等式a+b≥2才成立。
②y=x+的最小值為2。
③y=sinx+()的最小值為2.
④當(dāng)x>0時,y=x2+16x≥2,當(dāng)x2=16x時,即x=16,y取最小值512。
其中錯誤的命題是 。
已知數(shù)列是各項均不為0的等差數(shù)列,公差為d,為其前n項和,且滿足,.?dāng)?shù)列滿足,,為數(shù)列的前n項和.
(1)求數(shù)列的通項公式和數(shù)列的前n項和;
(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍;
(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請說明理由.
【解析】第一問利用在中,令n=1,n=2,
得 即
解得,, [
又時,滿足,
,
第二問,①當(dāng)n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.
,等號在n=2時取得.
此時 需滿足.
②當(dāng)n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.
是隨n的增大而增大, n=1時取得最小值-6.
此時 需滿足.
第三問,
若成等比數(shù)列,則,
即.
由,可得,即,
.
(1)(法一)在中,令n=1,n=2,
得 即
解得,, [
又時,滿足,
,
.
(2)①當(dāng)n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.
,等號在n=2時取得.
此時 需滿足.
②當(dāng)n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.
是隨n的增大而增大, n=1時取得最小值-6.
此時 需滿足.
綜合①、②可得的取值范圍是.
(3),
若成等比數(shù)列,則,
即.
由,可得,即,
.
又,且m>1,所以m=2,此時n=12.
因此,當(dāng)且僅當(dāng)m=2, n=12時,數(shù)列中的成等比數(shù)列
如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花園AMPN,要求B在AM上,D在AN上,且對角線MN過C點,|AB|=3米,|AD|=2米,
(I)要使矩形AMPN的面積大于32平方米,則AN的長應(yīng)在什么范圍內(nèi)?
(II)當(dāng)AN的長度是多少時,矩形AMPN的面積最。坎⑶蟪鲎钚∶娣e.
(Ⅲ)若AN的長度不少于6米,則當(dāng)AN的長度是多少時,矩形AMPN的面積最。坎⑶蟪鲎钚∶娣e.
【解析】本題主要考查函數(shù)的應(yīng)用,導(dǎo)數(shù)及均值不等式的應(yīng)用等,考查學(xué)生分析問題和解決問題的能力 第一問要利用相似比得到結(jié)論。
(I)由SAMPN > 32 得 > 32 ,
∵x >2,∴,即(3x-8)(x-8)> 0
∴2<X<8/3,即AN長的取值范圍是(2,8/3)或(8,+)
第二問,
當(dāng)且僅當(dāng)
(3)令
∴當(dāng)x > 4,y′> 0,即函數(shù)y=在(4,+∞)上單調(diào)遞增,∴函數(shù)y=在[6,+∞]上也單調(diào)遞增.
∴當(dāng)x=6時y=取得最小值,即SAMPN取得最小值27(平方米).
例10 為促進個人住房商品化的進程,我國1999年元月公布了個人住房公積金貸款利率和商業(yè)性貸款利率如下:
貸款期(年數(shù))
公積金貸款月利率(‰)
商業(yè)性貸款月利率(‰)
……
11
12
13
14
15
……
……
4.365
4.455
4.545
4.635
4.725
……
……
5.025
5.025
5.025
5.025
5.025
……
汪先生家要購買一套商品房,計劃貸款25萬元,其中公積金貸款10萬元,分十二年還清;商業(yè)貸款15萬元,分十五年還清.每種貸款分別按月等額還款,問:
(1)汪先生家每月應(yīng)還款多少元?
(2)在第十二年底汪先生家還清了公積金貸款,如果他想把余下的商業(yè)貸款也一次性還清;那么他家在這個月的還款總數(shù)是多少?
(參考數(shù)據(jù):1.004455144=1.8966,1.005025144=2.0581,1.005025180=2.4651)
講解 設(shè)月利率為r,每月還款數(shù)為a元,總貸款數(shù)為A元,還款期限為n月
第1月末欠款數(shù) A(1+r)-a
第2月末欠款數(shù) [A(1+r)-a](1+r)-a= A(1+r)2-a (1+r)-a
第3月末欠款數(shù) [A(1+r)2-a (1+r)-a](1+r)-a
=A(1+r)3-a (1+r)2-a(1+r)-a
……
第n月末欠款數(shù)
得:
對于12年期的10萬元貸款,n=144,r=4.455‰
∴
對于15年期的15萬元貸款,n=180,r=5.025‰
∴
由此可知,
(2)至12年末,
其中A=150000,a=1268.22,r=5.025‰ ∴X=41669.53
再加上當(dāng)月的計劃還款數(shù)2210.59元,當(dāng)月共還款43880.12元.
需要提及的是,本題的計算如果不許用計算器,就要用到二項展開式進行估算,這在2002年全國高考第(12)題中得到考查.
例11 醫(yī)學(xué)上為研究傳染病傳播中病毒細胞的發(fā)展規(guī)律及其預(yù)防,將病毒細胞注入一只小白鼠體內(nèi)進行實驗,經(jīng)檢測,病毒細胞的增長數(shù)與天數(shù)的關(guān)系記錄如下表. 已知該種病毒細胞在小白鼠體內(nèi)的個數(shù)超過108的時候小白鼠將死亡.但注射某種藥物,將可殺死其體內(nèi)該病毒細胞的98%.
(1)為了使小白鼠在實驗過程中不死亡,第一次最遲應(yīng)在何時注射該種藥物?(精確到天)
(2)第二次最遲應(yīng)在何時注射該種藥物,才能維持小白鼠的生命?(精確到天)
|