(2)若為奇函數(shù).則.即 查看更多

 

題目列表(包括答案和解析)

將奇函數(shù)的圖象關于原點(即(0,0))對稱這一性質(zhì)進行拓廣,有下面的結(jié)論:
①函數(shù)y=f(x)滿足f(a+x)+f(a-x)=2b的充要條件是y=f(x)的圖象關于點(a,b)成中心對稱.
②函數(shù)y=f(x)滿足F(x)=f(x+a)-f(a)為奇函數(shù)的充要條件是y=f(x)的圖象關于點(a,f(a))成中心對稱(注:若a不屬于x的定義域時,則f(a)不存在).
利用上述結(jié)論完成下列各題:
(1)寫出函數(shù)f(x)=tanx的圖象的對稱中心的坐標,并加以證明.
(2)已知m(m≠-1)為實數(shù),試問函數(shù)數(shù)學公式的圖象是否關于某一點成中心對稱?若是,求出對稱中心的坐標并說明理由;若不是,請說明理由.
(3)若函數(shù)數(shù)學公式的圖象關于點數(shù)學公式成中心對稱,求t的值.

查看答案和解析>>

將奇函數(shù)的圖象關于原點(即(0,0))對稱這一性質(zhì)進行拓廣,有下面的結(jié)論:
①函數(shù)y=f(x)滿足f(a+x)+f(a-x)=2b的充要條件是y=f(x)的圖象關于點(a,b)成中心對稱.
②函數(shù)y=f(x)滿足F(x)=f(x+a)-f(a)為奇函數(shù)的充要條件是y=f(x)的圖象關于點(a,f(a))成中心對稱(注:若a不屬于x的定義域時,則f(a)不存在).
利用上述結(jié)論完成下列各題:
(1)寫出函數(shù)f(x)=tanx的圖象的對稱中心的坐標,并加以證明.
(2)已知m(m≠-1)為實數(shù),試問函數(shù)f(x)=
x+m
x-1
的圖象是否關于某一點成中心對稱?若是,求出對稱中心的坐標并說明理由;若不是,請說明理由.
(3)若函數(shù)f(x)=(x-
2
3
)(|x+t|+|x-3|)-4
的圖象關于點(
2
3
,f(
2
3
))
成中心對稱,求t的值.

查看答案和解析>>

將奇函數(shù)的圖象關于原點(即(0,0))對稱這一性質(zhì)進行拓廣,有下面的結(jié)論:
①函數(shù)y=f(x)滿足f(a+x)+f(a-x)=2b的充要條件是y=f(x)的圖象關于點(a,b)成中心對稱.
②函數(shù)y=f(x)滿足F(x)=f(x+a)-f(a)為奇函數(shù)的充要條件是y=f(x)的圖象關于點(a,f(a))成中心對稱(注:若a不屬于x的定義域時,則f(a)不存在).
利用上述結(jié)論完成下列各題:
(1)寫出函數(shù)f(x)=tanx的圖象的對稱中心的坐標,并加以證明.
(2)已知m(m≠-1)為實數(shù),試問函數(shù)的圖象是否關于某一點成中心對稱?若是,求出對稱中心的坐標并說明理由;若不是,請說明理由.
(3)若函數(shù)的圖象關于點成中心對稱,求t的值.

查看答案和解析>>

若函數(shù)g(x)=cosx•f(x)是奇函數(shù),且周期為π,則f(x)=______(寫出一個你認為符合題意的函數(shù)即可).

查看答案和解析>>

若函數(shù)g(x)=cosx•f(x)是奇函數(shù),且周期為π,則f(x)=    (寫出一個你認為符合題意的函數(shù)即可).

查看答案和解析>>


同步練習冊答案