5.ab=1; 6.y=30000x 6年 查看更多

 

題目列表(包括答案和解析)

(2012•邯鄲一模)已知集合A={x∈N|0≤x≤5},?AB={1,3,5},則集合B=( 。

查看答案和解析>>

已知集合A={x|-5<x-1≤6},B={x|x2-2x-15>0},則A∩B=( 。

查看答案和解析>>

已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},則A∩(CUB)等于( )

A.{4,5}          B.{2,4,5,7}        C.{1,6}        D.{3}

 

查看答案和解析>>

如圖,四棱錐S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點(diǎn),SE=2EB

(Ⅰ)證明:平面EDC⊥平面SBC.(Ⅱ)求二面角A—DE—C的大小                .

 

【解析】本試題主要考查了立體幾何中的運(yùn)用。

(1)證明:因?yàn)镾D⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點(diǎn),SE=2EB   所以ED⊥BS,DE⊥EC,所以ED⊥平面SBC.,因此可知得到平面EDC⊥平面SBC.

(Ⅱ)由SA2= SD2+AD2 = 5 ,AB=1,SE=2EB,AB⊥SA,知

AE2= (1 /3 SA)2+(2/ 3 AB)2 =1,又AD=1.

故△ADE為等腰三角形.

取ED中點(diǎn)F,連接AF,則AF⊥DE,AF2= AD2-DF2 =

連接FG,則FG∥EC,F(xiàn)G⊥DE.

所以,∠AFG是二面角A-DE-C的平面角.

連接AG,AG= 2 ,F(xiàn)G2= DG2-DF2 =,

cos∠AFG=(AF2+FG2-AG2 )/2⋅AF⋅FG =-1 /2 ,

所以,二面角A-DE-C的大小為120°

 

查看答案和解析>>

已知A、B兩地的路程為240千米.某經(jīng)銷(xiāo)商每天都要用汽車(chē)或火車(chē)將噸保鮮品一次 性由A地運(yùn)往B地.受各種因素限制,下一周只能采用汽車(chē)和火車(chē)中的一種進(jìn)行運(yùn)輸,且須提前預(yù)訂.

現(xiàn)有貨運(yùn)收費(fèi)項(xiàng)目及收費(fèi)標(biāo)準(zhǔn)表、行駛路程s(千米)與行駛時(shí)間t(時(shí))的函數(shù)圖象(如圖1)、上周貨運(yùn)量折線統(tǒng)計(jì)圖(如圖2)等信息如下:

貨運(yùn)收費(fèi)項(xiàng)目及收費(fèi)標(biāo)準(zhǔn)表

運(yùn)輸工具

運(yùn)輸費(fèi)單價(jià):元/(噸?千米)

冷藏費(fèi)單價(jià):元/(噸?時(shí))

固定費(fèi)用:元/次

汽車(chē)

2

5

200

火車(chē)

1.6

5

2280

          

(1)汽車(chē)的速度為       千米/時(shí),火車(chē)的速度為       千米/時(shí):

(2)設(shè)每天用汽車(chē)和火車(chē)運(yùn)輸?shù)目傎M(fèi)用分別為(元)和(元),分別求、的函數(shù)關(guān)系式(不必寫(xiě)出的取值范圍),及為何值時(shí)(總費(fèi)用=運(yùn)輸費(fèi)+冷藏費(fèi)+固定費(fèi)用)

(3)請(qǐng)你從平均數(shù)、折線圖走勢(shì)兩個(gè)角度分析,建議該經(jīng)銷(xiāo)商應(yīng)提前為下周預(yù)定哪種運(yùn)輸工具,才能使每天的運(yùn)輸總費(fèi)用較省?

 

查看答案和解析>>


同步練習(xí)冊(cè)答案