(3)當(dāng)試證明:對時.有 查看更多

 

題目列表(包括答案和解析)

定義:對于函數(shù),若存在非零常數(shù),使函數(shù)對于定義域內(nèi)的任意實數(shù),都有,則稱函數(shù)是廣義周期函數(shù),其中稱為函數(shù)的廣義周期,稱為周距.
(1)證明函數(shù)是以2為廣義周期的廣義周期函數(shù),并求出它的相應(yīng)周距的值;
(2)試求一個函數(shù),使為常數(shù),)為廣義周期函數(shù),并求出它的一個廣義周期和周距;
(3)設(shè)函數(shù)是周期的周期函數(shù),當(dāng)函數(shù)上的值域為時,求上的最大值和最小值.

查看答案和解析>>

定義:對于函數(shù),若存在非零常數(shù),使函數(shù)對于定義域內(nèi)的任意實數(shù),都有,則稱函數(shù)是廣義周期函數(shù),其中稱為函數(shù)的廣義周期,稱為周距.
(1)證明函數(shù)是以2為廣義周期的廣義周期函數(shù),并求出它的相應(yīng)周距的值;
(2)試求一個函數(shù),使為常數(shù),)為廣義周期函數(shù),并求出它的一個廣義周期和周距
(3)設(shè)函數(shù)是周期的周期函數(shù),當(dāng)函數(shù)上的值域為時,求上的最大值和最小值.

查看答案和解析>>

定義:對于函數(shù),若存在非零常數(shù),使函數(shù)對于定義域內(nèi)的任意實數(shù),都有,則稱函數(shù)是廣義周期函數(shù),其中稱為函數(shù)的廣義周期,稱為周距.
(1)證明函數(shù)是以2為廣義周期的廣義周期函數(shù),并求出它的相應(yīng)周距的值;
(2)試求一個函數(shù),使為常數(shù),)為廣義周期函數(shù),并求出它的一個廣義周期和周距;
(3)設(shè)函數(shù)是周期的周期函數(shù),當(dāng)函數(shù)上的值域為時,求上的最大值和最小值.

查看答案和解析>>

若數(shù)列{bn}滿足:對于n∈N*,都有bn+2-bn=d(常數(shù)),則稱數(shù)列{bn}是公差為d的準(zhǔn)等差數(shù)列.如:若cn=
4n-1,當(dāng)n為奇數(shù)時
4n+9,當(dāng)n為偶數(shù)時.
則{cn}是公差為8的準(zhǔn)等差數(shù)列.
(1)求上述準(zhǔn)等差數(shù)列{cn}的前9項的和T9;
(2)設(shè)數(shù)列{an}滿足:a1=a,對于n∈N*,都有an+an+1=2n.求證:{an}為準(zhǔn)等差數(shù)列,并求其通項公式;
(3)設(shè)(2)中的數(shù)列{an}的前n項和為Sn,試研究:是否存在實數(shù)a,使得數(shù)列{Sn}有連續(xù)的兩項都等于50.若存在,請求出a的值;若不存在,請說明理由.

查看答案和解析>>

一種計算裝置,有一數(shù)據(jù)入口A和一個運算出口B,按照某種運算程序:①當(dāng)從A口輸入自然數(shù)1時,從B口得到,記為;②當(dāng)從A口輸入自然數(shù)n(n≥2)時,在B口得到的結(jié)果f(n)是前一個結(jié)果f(n-1)的

試問:(1)當(dāng)從A口分別輸入自然數(shù)2,3,4時,從B口分別得到什么數(shù)?試猜想f(n)的關(guān)系式,并證明你的結(jié)論;

(2)記Sn為數(shù)列{f(n)}的前n項的和.當(dāng)從B口得到16112195的倒數(shù)時,求此時對應(yīng)的Sn的值.

查看答案和解析>>

 

一、選擇題

BDCBB  DCBCB  AA

二、填空題

13.300    14.(文)  (理)3    15.    16.①③④

三、解答題

17.解:(1),

且與向量

,

(2)由(1)可得A+C,

  8分

   10分

當(dāng)且僅當(dāng)時,

     12分

18.(文科)解:設(shè)既會唱歌又會跳舞的有x人,則文娛隊共有(7-x)人,那么只會一項的人數(shù)是(7-2x)人,

(1)

故文娛隊共有5人。(8分)

(2)P(=1)  (12分)

(理科)解:(1)甲得66分(正確11題)的概率為

……………………2分

乙得54分(正確9題)的概率為………………4分

顯然P1=P2,即甲得66分的概率與乙得54分的概率一樣大。………………6分

(2)設(shè)答錯一題倒扣x分,則學(xué)生乙選對題的個數(shù)為隨機選擇20個題答對題的個數(shù)的期望為

得分為,=6

即每答錯一題應(yīng)該倒扣2分!12分

19.解(1)取BD中點N,連AN、MN

∵M(jìn)N//BC

∴∠AMN或其鄰補角就是異面直線AM與BC所成的角,在△AMN中,

  (4分)

(2)取BE中點P,連AP、PM,作MQ⊥AP于Q,

過Q作QH⊥AB于H,連MH,

∵EB⊥AP,EB⊥PM

∵EB⊥面APM即EB⊥MQ,

∴MQ⊥面AEB

∴HQ為MH在面AEB上的射影,即MH⊥AB

∴∠MHQ為二面角M―AB―E的平面角,

在△AMO中,

在△ABP中,

∴二面角M―AB―E的大小,為  (8分)

(3)若將圖(1)與圖(2)面ACD重合,該幾何體是5面體

這斜三棱柱的體積=3VA-BCD=   (12分)

20.(文科)(1)

,

   …………………………2分

……………………4分

當(dāng)恒成立,

的單調(diào)區(qū)間為

當(dāng)

…………………………6分

此時,函數(shù)上是增函數(shù),

上是減函數(shù)……………………8分

(2)

直線的斜率為-4………………9分

假設(shè)無實根

不可能是函數(shù)圖象的切線!12分

(理科)(1)

由于A、B、C三點共線,

……………………2分

…………………………4分

(2)令

上是增函數(shù)……………………6分

………………………………8分

(3)原不等式等價于

………………10分

       當(dāng)

       得    12分

21.解:(I)由

       因直線

      

   

      

       故所求橢圓方程為

   (II)當(dāng)L與x軸平行時,以AB為直徑的圓的方程:

      

       當(dāng)L與y軸平行時,以AB為直徑的圓 的方程:

      

       即兩圓相切于點(0,1)

       因此,所求的點T如果存在,只能是(0,1)。事實上,點T(0,1)就是所求的點,證明如下。

       若直線L垂直于x軸時,以AB為直徑的圓過點T(0,1)

       若直線L不垂直于x軸時,可設(shè)直線

       由

       記點

       又因為

       所以

      

       ,即以AB為直徑的圓恒過點T(0,1),故在坐標(biāo)平面上存在一個定點T(0,1)滿足條件

22.(文科)解:(I)

       曲線C在點

         (2分)

       令

       依題意點

      

       又   (4)

      

          (5分)

   (II)由已知

          ①

         ②

       ①-②得

      

         (9分)

          (10分)

       又

       又當(dāng)

      

      

          (13)

       綜上  (14分)

22.(理科)解:(I)

          2

   (II)

          3分

      

      

           4分

       上是增函數(shù)  5分

       又當(dāng)也是單調(diào)遞增的    6分

       當(dāng)

       此時,不一定是增函數(shù)   7分

   (III)當(dāng)

       當(dāng)

       欲證:

       即證:

       即需證:

      

猜想 ………………8分

構(gòu)造函數(shù)

在(0,1)上時單調(diào)遞減的,

……………………10分

設(shè)

同理可證

成立……………………12分

分別取,所以n-1個不等式相加即得:

 ……………………14分

 

 


同步練習(xí)冊答案