3.古典概型:滿足以下兩個條件的隨機(jī)試驗(yàn)的概率模型稱為古典概型①所有的基本事件只有有限個,②每個基本事件的發(fā)生都是等可能的, 查看更多

 

題目列表(包括答案和解析)

某中學(xué)研究性學(xué)習(xí)小組,為了考察高中學(xué)生的作文水平與愛看課外書的關(guān)系,在本校高三年級隨機(jī)調(diào)查了 50名學(xué)生.調(diào)査結(jié)果表明:在愛看課外書的25人中有18人作文水平好,另7人作文水平一般;在不愛看課外書的25人中有6人作文水平好,另19人作文水平一般.

(Ⅰ)試根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表,并運(yùn)用獨(dú)立性檢驗(yàn)思想,指出有多大把握認(rèn)為中學(xué)生的作文水平與愛看課外書有關(guān)系?

高中學(xué)生的作文水平與愛看課外書的2×2列聯(lián)表

 

愛看課外書

不愛看課外書

總計(jì)

作文水平好

 

 

 

作文水平一般

 

 

 

總計(jì)

 

 

 

(Ⅱ)將其中某5名愛看課外書且作文水平好的學(xué)生分別編號為1、2、3、4、5,某5名愛看課外書且作文水平一般的學(xué)生也分別編號為1、2、3、4、5,從這兩組學(xué)生中各任選1人進(jìn)行學(xué)習(xí)交流,求被選取的兩名學(xué)生的編號之和為3的倍數(shù)或4的倍數(shù)的概率.

參考公式:,其中.

參考數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【解析】本試題主要考查了古典概型和列聯(lián)表中獨(dú)立性檢驗(yàn)的運(yùn)用。結(jié)合公式為判定兩個分類變量的相關(guān)性,

第二問中,確定

結(jié)合互斥事件的概率求解得到。

解:因?yàn)?×2列聯(lián)表如下

 

愛看課外書

不愛看課外書

總計(jì)

作文水平好

 18

 6

 24

作文水平一般

 7

 19

 26

總計(jì)

 25

 25

 50

 

查看答案和解析>>

14、下面是古典概型的是(  )

查看答案和解析>>

給出下列命題:①擲兩枚硬幣,可出現(xiàn)“兩個正面”、“兩個反面”、“一正一反”三種等可能結(jié)果
②某袋中裝有大小均勻的三個紅球、兩個黑球、一個白球,任取一球,那么每種顏色的球被摸到的可能性不相等;
③分別從3名男同學(xué)、4名女同學(xué)中各選一名代表,男、女同學(xué)當(dāng)選的可能性相同;
④向一個圓面內(nèi)隨機(jī)地投一個點(diǎn),如果該點(diǎn)落在圓內(nèi)任意一點(diǎn)都是等可能的,則該隨機(jī)試驗(yàn)的數(shù)學(xué)模型是古典概型.
其中所有錯誤命題的序號為
①③④
①③④

查看答案和解析>>

下列說法中正確的有(  )
①平均數(shù)不受少數(shù)幾個極端值的影響,中位數(shù)受樣本中的每一個數(shù)據(jù)影響;
②拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”、“兩枚都是反面朝上”、“恰好一枚硬幣正面朝上”的概率一樣大
③用樣本的頻率分布估計(jì)總體分布的過程中,樣本容量越大,估計(jì)越準(zhǔn)確.
④向一個圓面內(nèi)隨機(jī)地投一個點(diǎn),如果該點(diǎn)落在圓內(nèi)任意一點(diǎn)都是等可能的,則該隨機(jī)試驗(yàn)的數(shù)學(xué)模型是古典概型.
A、①②B、③C、③④D、④

查看答案和解析>>

已知下列命題:
?y
=8x+56
意味著x每增加一個單位,y平均增加8個單位
②投擲一顆骰子實(shí)驗(yàn),有擲出的點(diǎn)數(shù)為奇數(shù)和擲出的點(diǎn)數(shù)為偶數(shù)兩個基本事件
③互斥事件不一定是對立事件,但對立事件一定是互斥事件
④在適宜的條件下種下一顆種子,觀察它是否發(fā)芽,這個實(shí)驗(yàn)為古典概型
其中正確的命題有
①③
①③

查看答案和解析>>


同步練習(xí)冊答案