18. 如圖.直線l1:與直線l2:之間的陰影區(qū)域記為W.其左半部分記為W1.右半部分記為W2. (Ⅰ)分別用不等式組表示W(wǎng)1和W2, (Ⅱ)若區(qū)域W中的動(dòng)點(diǎn)P(x.y)到l1.l2的距離之積等于d2.求點(diǎn)P的軌跡C的方程,(Ⅲ)設(shè)不過原點(diǎn)O的直線l與(Ⅱ)中的曲線C相交于M1.M2兩點(diǎn).且與l1.l2分別交于M3.M4兩點(diǎn). 求證△OM1M2的重心與△OM3M4的重心重合. 查看更多

 

題目列表(包括答案和解析)

(本小題共14分)

已知函數(shù)

   (1)試用含有a的式子表示b,并求的單調(diào)區(qū)間;

   (2)設(shè)函數(shù)的最大值為,試證明不等式:

 (3)首先閱讀材料:對(duì)于函數(shù)圖像上的任意兩點(diǎn),如果在函數(shù)圖象上存在點(diǎn),使得在點(diǎn)M處的切線,則稱AB存在“相依切線”特別地,當(dāng)時(shí),則稱AB存在“中值相依切線”。

請(qǐng)問在函數(shù)的圖象上是否存在兩點(diǎn),使得AB存在“中值相依切線”?若存在,求出一組A、B的坐標(biāo);若不存在,說明理由。

 

查看答案和解析>>

(本小題共14分)

已知函數(shù)時(shí)取得極值,曲線處的切線的斜率為;函數(shù),,函數(shù)的導(dǎo)函數(shù)的最小值為

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)求實(shí)數(shù)的值;

(Ⅲ) 求證:

查看答案和解析>>

(本小題共14分)
已知橢圓的焦點(diǎn)是,,點(diǎn)在橢圓上且滿足.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線與橢圓的交點(diǎn)為.
(i)求使 的面積為的點(diǎn)的個(gè)數(shù);
(ii)設(shè)為橢圓上任一點(diǎn),為坐標(biāo)原點(diǎn),,求的值.

查看答案和解析>>

. (本小題共14分)

已知函數(shù),其中.

(Ⅰ)若b>2a,且的最大值為2,最小值為-4,試求函數(shù)f(x)的最小值;

(Ⅱ)若對(duì)任意實(shí)數(shù)x,不等式恒成立,且存在使得成立,求c的值.

查看答案和解析>>

(本小題共14分)已知是由滿足下述條件的函數(shù)構(gòu)成的集合:對(duì)任意,①方程有實(shí)數(shù)根;②函數(shù)的導(dǎo)數(shù)滿足

(Ⅰ)判斷函數(shù)是否是集合中的元素,并說明理由;

(Ⅱ)集合中的元素具有下面的性質(zhì):若的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052601110591788514/SYS201205260113223396550013_ST.files/image008.png">,則對(duì)于任意,都存在,使得等式成立.試用這一性質(zhì)證明:方程有且只有一個(gè)實(shí)數(shù)根;

(Ⅲ)對(duì)任意,且,求證:對(duì)于定義域中任意的,,當(dāng),且時(shí),.

 

查看答案和解析>>

 

一、選擇題(本大題共8小題,每小題5分,共40分)

1―5:CBCBD  6―10:DCAA

二、填空題(本大題共6小題,每小題5分,共30分)

9.   10.   11.15  12.(1,e) e  13.②③  14.

三、解答題(本大題共6小題,共80分)

15.(共13分)

解:(I) 令,解得

所以函數(shù)的單調(diào)遞減區(qū)間為

(II)因?yàn)?/p>

所以

因?yàn)樵冢ǎ?,3)上,所以在[-1,2]上單調(diào)遞增,又由于在

[-2,-1]上單調(diào)遞減,因此和分別是在區(qū)間[-2,2]上的最大值和

最小值.

于是有,解得

故  因此

即函數(shù)在區(qū)間[-2,2]上的最小值為-7.

解法一:

   (Ⅰ)在直四棱柱ABCD―A1B1C1D1中,

∵A1A⊥底面ABCD,

∴AC是A1C在平面ABCD上的射影,

∵BD⊥AC, ∴BD⊥A1C.

   (Ⅱ)連結(jié)A1E,C1E,A1C1.

與(Ⅰ)同理可證BD⊥A1E,BD⊥C1E,

∴∠A1EC1二面角A1―BD―C1的平面角.

∵AD⊥DC, ∴∠A1D1C1=∠ADC=90°,

又A1D1=AD=2,D1C1=DC=2, AA1=,且AC⊥BD,

∴A1C1=4,AE=1,EC=3,  ∴A1E=2,C1E=2,

在△A1EC1中,A1C12=A1E2+C1E2,  ∴∠A1EC1=90°,

即二面角A1―BD―C1的大小為90°.

   (Ⅲ)過B作BF//AD交AC于F,連結(jié)FC1,

    則∠C1BF就是AD與BC1所成的角.

∵AB=AD=2,BD⊥AC,AE=1,  ∴BF=2,EF=1,F(xiàn)C=2,BC=DC,

∴FC1=.  在△BFC1中,

即異面直線AD與BC1所成角的大小為.

解法二:

(Ⅰ)同解法一.

(Ⅱ)如圖,以D為坐標(biāo)原點(diǎn),DA,DC,DD1所在直線分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系.

與(Ⅰ)同理可證,BD⊥A1E,BD⊥C1E,

∴∠A1EC1為二面角A1―BD―C1的平面角.

(Ⅲ)如圖,由D(0,0,0),A(2,0,0),C1(0,,,),B(3,,0)

∴異面直線AD與BC1所成角的大小為arccos.

解法三:

(II)如圖,建立空間直角坐標(biāo)系,坐標(biāo)原點(diǎn)為E.

     連結(jié)A1E,C1E,A1C1.

     與(I)同理可證,BD⊥A1E,BD⊥C1E,

     ∴∠A1EC1為二面角A1―BD―C1的平面角.

     由E(0,0,0),A1(0,-1,

     

.

    (Ⅲ)如圖,由A(0,-1,0),D(,0,0),B(,0,0),C1(0,3,).

得.

∴異面直線AD與BC1所成角的大小為arccos.

17.(共13分)

解:(Ⅰ)

ξ的概率分布如下表:

ξ

0

1

2

3

P

Eξ=0?+1?+2?+3?=1.5   (或Eξ=3?)

   (Ⅱ)乙至多擊中目標(biāo)2次的概率為

   (Ⅲ)設(shè)甲恰比乙多擊中目標(biāo)2次為事件A,甲恰擊中目標(biāo)2次且乙恰擊中目標(biāo)0次為事件B1,甲恰擊中目標(biāo)3次且乙恰擊中目標(biāo)1次為事件B2,則A=B1+B2,B1、B2為互斥事件.

    P(A)=P(B1)+P(B2)=

    所以,甲恰好比乙多擊中目標(biāo)2次的概率為

18.(共14分)

       解:(I)

      

       (II)直線由題意得

      

   (III)當(dāng)直線lx軸垂直時(shí),可設(shè)直線l的方程為. 由于直線l,曲線C關(guān)于x軸對(duì)稱,且l1l2關(guān)于x軸對(duì)稱,于是M1M2,M3M4的中點(diǎn)坐標(biāo)都為(a,0),所以△OM1M2,△OM3M4的重心坐標(biāo)都為,即它們的重心重合.

       當(dāng)直線lx軸不垂直時(shí),設(shè)直線l的方程為

       由

       由直線l與曲線C有兩個(gè)不同交點(diǎn),可知

      

      

       于是△OM1M2的重心與△OM3M4的重心也重合.

19.(共12分)

解:(Ⅰ)

(Ⅱ)因?yàn)?/p>

所以

猜想:是公比為的等比數(shù)列.

證明如下: 因?yàn)?/p>

所以是首項(xiàng)為的等比數(shù)列.

(Ⅲ)

20.(共14分)

   (Ⅰ)證明:設(shè)的峰點(diǎn),則由單峰函數(shù)定義可知,上單調(diào)遞增,

在上單調(diào)遞減.

當(dāng),

這與是含峰區(qū)間.

當(dāng)

這與是含峰區(qū)間.

(II)證明:由(I)的結(jié)論可知:

   當(dāng)f(x1)≥f(x2)時(shí),含峰區(qū)間的長度為l1=x2;

   當(dāng)f(x1)≤f(x2)時(shí),含峰區(qū)間的長度為l2=1-x1;

   對(duì)于上述兩種情況,由題意得

    ①   由①得1+x2x1≤1+2r,即x2x1≤2r.

又因?yàn)?i>x2x1≥2r,所以x2x1=2r,所以    x2x1=2r.  ②

將②代入①得     x1≤0.5-r, x2≥0.5+r.   ③

由①和③解得x1=0.5-r, x2=0.5+r.       

所以這時(shí)含峰區(qū)間的長度l1=l2=0.5+r,即存在x1 , x2使得所確定的含峰區(qū)間的長度不大于0.5+r.

(Ⅲ)解:對(duì)先選擇的x1, x2, x1 <x2, 由(II)可知    x1+x2=1,   ④

在第一次確定的含峰區(qū)間為(0,x2)的情況下,x3的取值應(yīng)滿足   x3+x1=x2 , ⑤

由④與⑤可得    當(dāng)x1>x3時(shí),含峰區(qū)間的長度為x1.

由條件x1x3≥0.02, 得x1-(1-2x1) ≥0.02, 從而x1≥0.34.

因此,為了將含峰區(qū)間的長度縮短到0.34,只要取

x1=0.34, x2=0.66, x3=0.32.

 

 


同步練習(xí)冊(cè)答案