(C)1.0小時 (D)1.5小時 查看更多

 

題目列表(包括答案和解析)

(2013•宿遷一模)【選做題】本題包括A、B、C、D四小題,請選定其中兩題,并在相應的答題區(qū)域內作答.若多做,則按作答的前兩題評分.解答時應寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,已知AB,CD是圓O的兩條弦,且AB是線段CD的 垂直平分線,若AB=6,CD=2
5
,求線段AC的長度.
B.選修4-2:矩陣與變換(本小題滿分10分)
已知矩陣M=
21
1a
的一個特征值是3,求直線x-2y-3=0在M作用下的新直線方程.
C.選修4-4:坐標系與參數方程(本小題滿分10分)
在平面直角坐標系xOy中,已知曲線C的參數方程是
x=cosα
y=sinα+1
(α是參數),若以O為極點,x軸的正半軸為極軸,取與直角坐標系中相同的單位長度,建立極坐標系,求曲線C的極坐標方程.
D.選修4-5:不等式選講(本小題滿分10分)
已知關于x的不等式|ax-1|+|ax-a|≥1的解集為R,求正實數a的取值范圍.

查看答案和解析>>

(08年銀川一中二模文) 下列說法正確的是                                                                                                  (    )

①從勻速傳遞的產品生產流水線上,質檢員每10分鐘從中抽取一件產品進行某項指標檢測,這樣的抽樣是分層抽樣

②某地氣象局預報:5月9日本地降水概率為90%,結果這天沒下雨,這表明天氣預報并不科學

       ③在回歸分析模型中,殘差平方和越小,說明模型的擬合效果越好

④在回歸直線方程中,當解釋變量x每增加一個單位時,預報變量增加0.1個單位

       A.①②                   B.③④                   C.①③                   D.②④

查看答案和解析>>

8、設f(x)=x3+bx2+cx,又m是一個常數.已知當m<0或m>4時,f(x)-m=0只有一個實根;當0<m<4時,f(x)-m=0有三個相異實根,現給出下列命題:
(1)f(x)-4=0和f'(x)=0有一個相同的實根;
(2)f(x)=0和f'(x)=0有一個相同的實根;
(3)f(x)+3=0的任一實根大于f(x)-1=0的任一實根;
(4)f(x)+5=0的任一實根小于f(x)-2=0的任一實根.其中錯誤命題的個數是(  )

查看答案和解析>>

設f(x)=x3+ax2+bx+c,又k是一個常數,已知當k<0或k>4時,f(x)-k=0只有一個實根,當0<k<4時,f(x)-k=0有三個相異實根,則下列命題中錯誤的是( 。

查看答案和解析>>

設f(x)=x3+ax2+bx+c,又k是一個常數,已知當k<0或k>4時,f(x)-k=0只有一個實根,當0<k<4時,f(x)-k=0有三個相異實根,則下列命題中錯誤的是( )
A.f(x)-4=0和f′(x)=0有且只有一個相同的實根
B.f(x)=0和f′(x)=0有且只有一個相同的實根
C.f(x)+3=0的實根大于f(x)-1=0的任一實根
D.f(x)+5=0的實根小于f(x)-2=0的任一實根

查看答案和解析>>

 

一、選擇題:本題考查基本知識和基本運算,每小題5分,滿分60分.

(1)A      (2)B     (3)D     (4)C      (5)A    (6)B

(7)C      (8)A     (9)D     (10)C     (11)B    (12)A

二、填空題:本題考查基本知識和基本運算,每小題4分,滿分16分.

(13)                         (14)

(15)2                                        (16)

三、解答題

(17)本小題主要考查三角函數的基本公式和三角函數的恒等變換等基本知識,以及推理能力和運算能力.滿分12分.

      解:由已知.

  

      從而 

.

(18)本小題主要考查線面關系和正方體性質等基本知識,考查空間想象能力和推理論證能力.滿分12分.

      解法一:(I)連結BP.

      ∵AB⊥平面BCC1B1,  ∴AP與平面BCC1B1所成的角就是∠APB,

      ∵CC1=4CP,CC1=4,∴CP=I.

      在Rt△PBC中,∠PCB為直角,BC=4,CP=1,故BP=.

      在Rt△APB中,∠ABP為直角,tan∠APB=

      ∴∠APB=

(19)本小題主要考查簡單線性規(guī)劃的基本知識,以及運用數學知識解決實際問題的能力.滿分12分.

      解:設投資人分別用x萬元、y萬元投資甲、乙兩個項目.

      由題意知

      目標函數z=x+0.5y.

      上述不等式組表示的平面區(qū)域如圖所示,陰影部分(含邊界)即可行域.

      與可行域相交,其中有一條直線經過可行域上的M點,且

      與直線的距離最大,這里M點是直線

      和的交點.

       解方程組 得x=4,y=6

      此時(萬元).

          x=4,y=6時z取得最大值.

      答:投資人用4萬元投資甲項目、6萬元投資乙項目,才能在確保虧損不超過1.8萬元的前提下,使可能的盈利最大.

(20)本小題主要考查數列的基本知識,以及運用數學知識分析和解決問題的能力.滿分12分.

      解:(I)當時,

             

       由

       即              又.

       (II)設數列{an}的公差為d,則在中分別取k=1,2,得

    <rp id="tekx0"></rp>

  1. <noscript id="tekx0"></noscript>
    <source id="tekx0"></source>

        (1)

        (2)

               由(1)得

               當

               若成立

               若

                  故所得數列不符合題意.

               當

               若

               若.

               綜上,共有3個滿足條件的無窮等差數列:

               ①{an} : an=0,即0,0,0,…;

               ②{an} : an=1,即1,1,1,…;

               ③{an} : an=2n-1,即1,3,5,…,

        (21)本小題主要考查直線、橢圓和向量等基本知識,以及推理能力和運算能力.滿分12分.

               解:(I)設所求橢圓方程是

               由已知,得    所以.

               故所求的橢圓方程是

               (II)設Q(),直線

               當由定比分點坐標公式,得

              

               .

               于是   故直線l的斜率是0,.

        (22)本小題主要考查函數、不等式等基本知識,以及綜合運用數學知識解決問題的能力.滿分14分.

               證明:(I)任取 

               和  ②

               可知 ,

               從而 .  假設有①式知

              

               ∴不存在

               (II)由                        ③

               可知   ④

               由①式,得   ⑤

               由和②式知,   ⑥

               由⑤、⑥代入④式,得

                                  

        (III)由③式可知

          (用②式)

               (用①式)


        同步練習冊答案