設(shè)雙曲線C:相交于兩個不同的點A.B.(I)求雙曲線C的離心率e的取值范圍: 查看更多

 

題目列表(包括答案和解析)

設(shè)雙曲線C相交于兩個不同的點A、B.

求雙曲線C的離心率e的取值范圍:

查看答案和解析>>

設(shè)雙曲線C:相交于兩個不同的點A、B.

(I)求雙曲線C的離心率e的取值范圍:

(II)設(shè)直線l與y軸的交點為P,且a的值.

查看答案和解析>>

設(shè)雙曲線C相交于兩個不同的點A、B.

I)求雙曲線C的離心率e的取值范圍:

II)設(shè)直線ly軸的交點為P,且a的值.

 

查看答案和解析>>

設(shè)雙曲線C相交于兩個不同的點A、B.

I)求雙曲線C的離心率e的取值范圍:

II)設(shè)直線ly軸的交點為P,且a的值.

 

查看答案和解析>>

(04全國卷I)(12分)

設(shè)雙曲線C:相交于兩個不同的點A、B.

(I)求雙曲線C的離心率e的取值范圍:

(II)設(shè)直線l與y軸的交點為P,且求a的值.

查看答案和解析>>

 

一、選擇題

(1)D     (2)B     (3)C     (4)B     (5)A     (6)B

(7)C     (8)C     (9)B     (10)A    (11)D    (12)B

二、填空題:本大題共4小題,每小題4分,共16分.把答案填在題中橫線上.

(13){x|x≥-1}   (14)x2+y2=4    (15)    (16)①②④

三、解答題

(17)本小題主要考查三角函數(shù)基本公式和簡單的變形,以及三角函婁的有關(guān)性質(zhì).滿分12分.

解:

        

所以函數(shù)f(x)的最小正周期是π,最大值是,最小值是.

(18)本小題主要考查離散型隨機變量分布列和數(shù)學(xué)期望等概念.考查運用概率知識解決實際問題的能力.滿分12分.

解:P(ξ=0)=0.52×0.62=0.09.

    P(ξ=1)= ×0.52×0.62+ ×0.52×0.4×0.6=0.3

    P(ξ=2)=  ×0.52×0.62+×0.52×0.4×0.6+ ×0.52×0.42=0.37.

    P(ξ=3)= ×0.52×0.4×0.6+×0.52×0.42=0.2

    P(ξ=4)= 0.52×0.42=0.04

于是得到隨機變量ξ的概率分布列為:

ξ

0

1

2

3

4

P

0.09

0.3

0.37

0.2

0.04

所以Eξ=0×0.09+1×0.3+2×0.37+3×0.2+4×0.04=1.8.

(19)本小題主要考查導(dǎo)數(shù)的概率和計算,應(yīng)用導(dǎo)數(shù)研究函數(shù)性質(zhì)的方法,考查分類討論的數(shù)學(xué)思想.滿分12分.

解:函數(shù)f(x)的導(dǎo)數(shù):

(I)當(dāng)a=0時,若x<0,則<0,若x>0,則>0.

所以當(dāng)a=0時,函數(shù)f(x)在區(qū)間(-∞,0)內(nèi)為減函數(shù),在區(qū)間(0,+∞)內(nèi)為增函數(shù).

(II)當(dāng)

 由

所以,當(dāng)a>0時,函數(shù)f(x)在區(qū)間(-∞,-)內(nèi)為增函數(shù),在區(qū)間(-,0)內(nèi)為減函數(shù),在區(qū)間(0,+∞)內(nèi)為增函數(shù);

(III)當(dāng)a<0時,由2x+ax2>0,解得0<x<-,

由2x+ax2<0,解得x<0或x>-.

所以當(dāng)a<0時,函數(shù)f(x)在區(qū)間(-∞,0)內(nèi)為減函數(shù),在區(qū)間(0,-)內(nèi)為增函數(shù),在區(qū)間(-,+∞)內(nèi)為減函數(shù).

(20)本小題主要考查棱錐,二面角和線面關(guān)系等基本知識,同時考查空間想象能力和推理、運算能力.滿分12分.

    ∵AD⊥PB,∴AD⊥OB,

∵PA=PD,∴OA=OD,

于是OB平分AD,點E為AD的中點,所以PE⊥AD.

由此知∠PEB為面PAD與面ABCD所成二面角的平面角,

∴∠PEB=120°,∠PEO=60°

由已知可求得PE=

∴PO=PE?sin60°=,

即點P到平面ABCD的距離為.

(II)解法一:如圖建立直角坐標(biāo)系,其中O為坐標(biāo)原點,x軸平行于DA.

.連結(jié)AG.

    1. 所以

      等于所求二面角的平面角,

      于是

      所以所求二面角的大小為  .

      解法二:如圖,取PB的中點G,PC的中點F,連結(jié)EG、AG、GF,則AG⊥PB,F(xiàn)G//BC,F(xiàn)G=BC.

      <tfoot id="wpmgm"><s id="wpmgm"></s></tfoot>
      • ∴∠AGF是所求二面角的平面角.

        ∵AD⊥面POB,∴AD⊥EG.

        又∵PE=BE,∴EG⊥PB,且∠PEG=60°.

        在Rt△PEG中,EG=PE?cos60°=.

        在Rt△PEG中,EG=AD=1.

        于是tan∠GAE==,

        又∠AGF=π-∠GAE.

        所以所求二面角的大小為π-arctan.

        (21)(本小題主要考查直線和雙曲線的概念和性質(zhì),平面向量的運算等解析幾何的基本思想和綜合解題能力.滿分12分.

        解:(I)由C與t相交于兩個不同的點,故知方程組

        有兩個不同的實數(shù)解.消去y并整理得

        (1-a2x2+2a2x-2a2=0.                   ①

        雙曲線的離心率

        (II)設(shè)

        由于x1+x2都是方程①的根,且1-a2≠0,

        (22)本小題主要考查數(shù)列,等比數(shù)列的概念和基本知識,考查運算能力以及分析、歸納和推理能力.滿分14分.

             解:(I)a2=a1+(-1)1=0,

                      a3=a2+31=3.

                   a4=a3+(-1)2=4,

                   a5=a4+32=13,

            所以,a3=3,a5=13.

            (II)  a2k+1=a2k+3k

                       = a2k-1+(-1)k+3k,

             所以a2k+1a2k-1=3k+(-1)k,

            同理a2k-1a2k-3=3k-1+(-1)k-1,

                     ……

                 a3a1=3+(-1).

            所以(a2k+1a2k-1)+(a2k-1a2k-3)+…+(a3a1)

                =(3k+3k-1+…+3)+[(-1)k+(-1)k-1+…+(-1)],

            由此得a2k+1a1=(3k-1)+[(-1)k-1],

            于是a2k+1= 

                a2k= a2k-1+(-1)k

                  =(-1)k-1-1+(-1)k

                  =(-1)k=1.

        {an}的通項公式為:

            當(dāng)n為奇數(shù)時,an­=

            當(dāng)n為偶數(shù)時,

         


        同步練習(xí)冊答案
          <tt id="wpmgm"></tt>