(2)求與平面所成角的大小的正弦值. 查看更多

 

題目列表(包括答案和解析)

如圖,平面ABCD⊥平面ABEF,ABCD是邊長為1的正方形,ABEF是矩形,且AF=
12
,G是線段EF的中點(diǎn).
(Ⅰ)求證:AG⊥平面BCG;
(Ⅱ)求直線BE與平面ACG所成角的正弦值的大。

查看答案和解析>>

如圖,平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四邊形ABDE是直角梯形,BD∥AE,BD⊥BA,BD=
12
AE=2
,O、M分別為CE、AB的中點(diǎn).
(1)求異面直線AB與CE所成角的大。
(2)求直線CD和平面ODM所成角的正弦值.

查看答案和解析>>

如圖,平面平面,是等腰直角三角形,,四邊形是直角梯形,AE,,,分別為的中點(diǎn)

1)求異面直線所成角的大;

2)求直線和平面所成角的正弦值.

 

查看答案和解析>>

如圖,平面平面,是等腰直角三角形,,四邊形是直角梯形,AE,,,分別為的中點(diǎn)

1)求異面直線所成角的大小;

2)求直線和平面所成角的正弦值.

 

查看答案和解析>>

如圖,平面平面,是等腰直角三角形,,四邊形是直角梯形,∥AE,,,分別為的中點(diǎn).

(1)求異面直線所成角的大;
(2)求直線和平面所成角的正弦值.

查看答案和解析>>

                                  (一)

一、選擇題

1~8:CAAD    BBBD

二、填空題

9、            10、35            11、           12、       

13、          14、10            15、

三、解答題

16、解:(1)由及正弦定理有:    

                                       ……….2分

,且,

,;                             ……….4分

,則,∴三角形.            ……….6分

(2)∵ ,∴,

,而,               ……….8分

,∴,∴.           ……….12分

17解:(1)取的中點(diǎn)的中點(diǎn)連結(jié)

平面, .

,

平面.……………………………3分

,四邊形是平行四邊形, 平面

平面, 平面平面 ………………………………6分

 。ǎ玻┻^,連結(jié)

由(1)中的平面平面,所以在面上的射影為,所以就是所求的角.  …………………………………………9分

令正方體的棱長為,所以,所以

與平面所成角的大小的正弦值為.   …………………………12分

18解:(1)表示取出的三個(gè)球中數(shù)字最大者為3.

①三次取球均出現(xiàn)最大數(shù)字為3的概率

②三取取球中有2次出現(xiàn)最大數(shù)字3的概率

③三次取球中僅有1次出現(xiàn)最大數(shù)字3的概率

.   ……………………………………………………7分

(2)在時(shí), 利用(1)的原理可知:

,(=1,2,3,4)

 的概率分布為:

 

 

=1×+2×+3×+4× = .………………………………………………7分

19、解:(I)由已知拋物線的焦點(diǎn)為

故所求橢圓方程為                                              …………6分

   (II)設(shè)直線BC的方程為

代入橢圓方程并化簡得                …………9分

又點(diǎn)A到BC的距離為,                                           …………11分

所以△ABC面積的最大值為                                             …………14分

20解:(1),

設(shè)

為增,

當(dāng)

,

所以圖象上的點(diǎn)總在圖象的上方.    …………………………6分

(2)當(dāng)

x

(-∞,0)

(0,1)

1

(1,+∞)

F(x)

0

+

F(x)

e

①當(dāng)x>0時(shí),F(xiàn)(x)在x=1時(shí)有最小值e,

②當(dāng)x<0時(shí),F(xiàn)(x)為減函數(shù),

,

③當(dāng)x=0時(shí),∈R.

由①②③,恒成立的的范圍是. ……………………………………14分

21解:(1)由

,所以,

所以數(shù)列為等比數(shù)列.    …………………………………………4分

  (2)由(1)有. ……………………………………6分

所以,,……,

,累和得

. …8分

因?yàn)?sub>,………………………………………………9分

所以

,用錯(cuò)位相減法得

,所以

所以

即當(dāng)為奇數(shù)時(shí)命題成立.……………………………………………………………11分

,

所以.即當(dāng)為偶數(shù)時(shí)命題成立.

綜合以上得.………………………………………………13分

 

 


同步練習(xí)冊(cè)答案