(II)已知直線l的方向向量為與橢圓M交于B.C兩點(diǎn).求△ABC面積的最大值. 查看更多

 

題目列表(包括答案和解析)

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的右頂點(diǎn)為A(2,0),一條漸近線為y=
1
2
x
,過點(diǎn)B(0,2)且斜率為k的直線l與該雙曲線交于不同的兩點(diǎn)P,Q.
(I)求雙曲線的方程及k的取值范圍;
(II)是否存在常數(shù)k,使得向量
OP
+
OQ
AB
垂直?如果存在,求k的值;如果不存在,請說明理由.

查看答案和解析>>

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的右頂點(diǎn)為A(2,0),一條漸近線為y=
1
2
x
,過點(diǎn)B(0,2)且斜率為k的直線l與該雙曲線交于不同的兩點(diǎn)P,Q.
(I)求雙曲線的方程及k的取值范圍;
(II)是否存在常數(shù)k,使得向量
OP
+
OQ
AB
垂直?如果存在,求k的值;如果不存在,請說明理由.

查看答案和解析>>

已知曲線C上任意一點(diǎn)到直線的距離與它到點(diǎn)的距離之比是.   
(I)求曲線C的方程;
(II)設(shè)B為曲線C與y軸負(fù)半軸的交點(diǎn),問:是否存在方向向量為的直線l,l與曲線C相交于M、N兩點(diǎn),使,且夾角為60°?若存在,求出k值,并寫出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

已知雙曲線數(shù)學(xué)公式的右頂點(diǎn)為A(2,0),右焦點(diǎn)為F、O為坐標(biāo)原點(diǎn),點(diǎn)F,A到漸近線的距離之比為數(shù)學(xué)公式,過點(diǎn)B(0,2)且斜率為k的直線l與該雙曲線交于不同的兩點(diǎn)P,Q.
(I)求雙曲線的方程及k的取值范圍;
(II)是否存在常數(shù)k,使得向量數(shù)學(xué)公式垂直?如果存在,求k的值;如果不存在,請說明理由.

查看答案和解析>>

已知橢圓C的中心在原點(diǎn),左焦點(diǎn)為(-
3
,0)
,離心率為
3
2
.設(shè)直線l與橢圓C有且只有一個(gè)公共點(diǎn)P,記點(diǎn)P在第一象限時(shí)直線l與x軸、y軸的交點(diǎn)分別為A、B,且向量
OM
=
OA
+
OB

求:
(I)橢圓C的方程;
(II)|
OM
|
的最小值及此時(shí)直線l的方程.

查看答案和解析>>

                                  (一)

一、選擇題

1~8:CAAD    BBBD

二、填空題

9、            10、35            11、           12、       

13、          14、10            15、

三、解答題

16、解:(1)由及正弦定理有:    

                                       ……….2分

,且,

,;                             ……….4分

,則,∴三角形.            ……….6分

(2)∵ ,∴,

,而,               ……….8分

,∴,∴.           ……….12分

17解:(1)取的中點(diǎn)的中點(diǎn)連結(jié)

平面, .

,

平面.……………………………3分

,四邊形是平行四邊形, 平面

平面, 平面平面 ………………………………6分

 。ǎ玻┻^,連結(jié)

由(1)中的平面平面,所以在面上的射影為,所以就是所求的角.  …………………………………………9分

令正方體的棱長為,所以,所以

與平面所成角的大小的正弦值為.   …………………………12分

18解:(1)表示取出的三個(gè)球中數(shù)字最大者為3.

①三次取球均出現(xiàn)最大數(shù)字為3的概率

②三取取球中有2次出現(xiàn)最大數(shù)字3的概率

③三次取球中僅有1次出現(xiàn)最大數(shù)字3的概率

.   ……………………………………………………7分

(2)在時(shí), 利用(1)的原理可知:

,(=1,2,3,4)

 的概率分布為:

 

 

=1×+2×+3×+4× = .………………………………………………7分

19、解:(I)由已知拋物線的焦點(diǎn)為

故所求橢圓方程為                                              …………6分

   (II)設(shè)直線BC的方程為

代入橢圓方程并化簡得                …………9分

又點(diǎn)A到BC的距離為,                                           …………11分

所以△ABC面積的最大值為                                             …………14分

20解:(1)

設(shè)

為增,

當(dāng)

,

所以圖象上的點(diǎn)總在圖象的上方.    …………………………6分

(2)當(dāng)

x

(-∞,0)

(0,1)

1

(1,+∞)

F(x)

0

+

F(x)

e

①當(dāng)x>0時(shí),F(xiàn)(x)在x=1時(shí)有最小值e,

②當(dāng)x<0時(shí),F(xiàn)(x)為減函數(shù),

,

③當(dāng)x=0時(shí),∈R.

由①②③,恒成立的的范圍是. ……………………………………14分

21解:(1)由

,所以

所以數(shù)列為等比數(shù)列.    …………………………………………4分

  (2)由(1)有. ……………………………………6分

所以,,……,

,累和得

. …8分

因?yàn)?sub>,………………………………………………9分

所以

,用錯(cuò)位相減法得

,所以

所以

即當(dāng)為奇數(shù)時(shí)命題成立.……………………………………………………………11分

,

所以.即當(dāng)為偶數(shù)時(shí)命題成立.

綜合以上得.………………………………………………13分

 

 


同步練習(xí)冊答案