方法一:聯(lián)立①②消去y.得x2+x-x02-2=0. 設(shè)Q ∵M(jìn)是PQ的中點(diǎn). 查看更多

 

題目列表(包括答案和解析)

如圖,直線與拋物線交于兩點(diǎn),與軸相交于點(diǎn),且.

(1)求證:點(diǎn)的坐標(biāo)為;

(2)求證:

(3)求的面積的最小值.

【解析】設(shè)出點(diǎn)M的坐標(biāo),并把過點(diǎn)M的方程設(shè)出來.為避免對(duì)斜率不存在的情況進(jìn)行討論,可以設(shè)其方程為,然后與拋物線方程聯(lián)立消x,根據(jù),即可建立關(guān)于的方程.求出的值.

(2)在第(1)問的基礎(chǔ)上,證明:即可.

(3)先建立面積S關(guān)于m的函數(shù)關(guān)系式,根據(jù)建立即可,然后再考慮利用函數(shù)求最值的方法求最值.

 

查看答案和解析>>

已知直線某學(xué)生做如下變形,由直線與雙曲線聯(lián)立消y得形如的方程,當(dāng)A=0時(shí)該方程有一解;當(dāng)A≠0時(shí),恒成立,若該生計(jì)算過程正確,則實(shí)數(shù)m的取值范圍是            .

查看答案和解析>>

已知直線y=k(x-3)與雙曲線
x2
m
-
y2
27
=1
,有如下信息:聯(lián)立方程組
y=k(x-3)
x2
m
-
y2
27
=1
消去y后得到方程Ax2+Bx+C=0,分類討論:
(1)當(dāng)A=0時(shí),該方程恒有一解;
(2)當(dāng)A≠0時(shí),△=B2-4AC≥0恒成立.在滿足所提供信息的前提下,雙曲線離心率的取值范圍是( 。
A、[9,+∞)
B、(1,9]
C、(1,2]
D、[2,+∞)

查看答案和解析>>

橢圓的左、右焦點(diǎn)分別為,一條直線經(jīng)過點(diǎn)與橢圓交于兩點(diǎn).

⑴求的周長;

⑵若的傾斜角為,求的面積.

【解析】(1)根據(jù)橢圓的定義的周長等于4a.

(2)設(shè),則,然后直線l的方程與橢圓方程聯(lián)立,消去x,利用韋達(dá)定理可求出所求三角形的面積.

 

查看答案和解析>>

已知直線y=k(x-3)與雙曲線
x2
m
-
y2
27
=1
,有如下信息:聯(lián)立方程組
y=k(x-3)
x2
m
-
y2
27
=1
消去y后得到方程Ax2+Bx+C=0,分類討論:
(1)當(dāng)A=0時(shí),該方程恒有一解;
(2)當(dāng)A≠0時(shí),△=B2-4AC≥0恒成立.在滿足所提供信息的前提下,雙曲線離心率的取值范圍是( 。
A.[9,+∞)B.(1,9]C.(1,2]D.[2,+∞)

查看答案和解析>>


同步練習(xí)冊(cè)答案