(A) (B) (C) (D)(11)某校高三年級(jí)舉行一次演講賽共有10位同學(xué)參賽.其中一班有3位.二班有2位.其它班有5位.若采用抽簽的方式確定他們的演講順序.則一班有3位同學(xué)恰好被排在一起.而二班的2位同學(xué)沒有被排在一起的概率為: 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)某校高中年級(jí)開設(shè)了豐富多彩的校本課程,甲、乙兩班各隨機(jī)抽取了5名學(xué)生的學(xué)分,用莖葉圖表示(如圖).s1,s2分別表示甲、乙兩班抽取的5名學(xué)生學(xué)分的標(biāo)準(zhǔn)差,則s1  ____  s2.(填“>”、“<”或“=”).( 。
A、>B、<C、=D、不能確定

查看答案和解析>>

6、某校高中研究性學(xué)習(xí)小組對(duì)本地區(qū)2005年至2007年快餐公司發(fā)展情況進(jìn)行了調(diào)查,制成了該地區(qū)快餐公司個(gè)數(shù)情況的條形圖和快餐公司盒飯年銷售量的平均數(shù)情況條形圖(如圖),根據(jù)圖中提供的信息可以得出這三年中該地區(qū)每年平均銷售盒飯(  )

查看答案和解析>>

5、某校高三(1)班共有60人,現(xiàn)需從中抽取所有座位號(hào)能被3整除的同學(xué)參加某項(xiàng)測(cè)試,下面是四位同學(xué)設(shè)計(jì)的輸出參加測(cè)試同學(xué)座位號(hào)的程序框圖,則其中設(shè)計(jì)正確的是( 。

查看答案和解析>>

某校高一年級(jí)要從3名男生a,b,c和2名女生d,e中任選3名代表參加學(xué)校的演講比賽.
(1)求男生a被選中的概率;
(2)求男生a和女生d至少一人被選中的概率.

查看答案和解析>>

某校高三理科實(shí)驗(yàn)班有5名同學(xué)報(bào)名參加甲、乙、丙三所高校的自主招生考試,每人限報(bào)一所高校.若這三所高校中每個(gè)學(xué)校都至少有1名同學(xué)報(bào)考,那么這5名同學(xué)不同的報(bào)考方法種數(shù)共有(  )
A、144種B、150種C、196種D、256種

查看答案和解析>>

 

一、選擇題:每小題5分,共60分.

(1)D     (2)A     (3)D      (4)A     (5)B      (6)C 

(7)C     (8)C     (9)B      (10)B    (11)D      (12)D

二、填空題:每小題4分,共16分.

(13)-2   (14)   (15)   (16)[-1,3]

三、解答題:共74分.

(17)(本小題12分)

解:

     

故該函數(shù)的最小正周期是;最小值是-2;

單增區(qū)間是[],

(18)(本小題12分)

      解:(I)的所有可能值為0,1,2,3,4

             用AK表示“汽車通過第k個(gè)路口時(shí)不停(遇綠燈)”,

則P(AK)=獨(dú)立.

 

從而有分布列:

 

            0     1       2        3        4

 

    P                          

            

             (II)

             答:停車時(shí)最多已通過3個(gè)路口的概率為.

   (I)證明:因PA⊥底面,有PA⊥AB,又知AB⊥AD,

故AB⊥面PAD,推得BA⊥AE,

又AM∥CD∥EF,且AM=EF,

證得AEFM是矩形,故AM⊥MF.

又因AE⊥PD,AE⊥CD,故AE⊥面PCD,

而MF∥AE,得MF⊥面PCD,

故MF⊥PC,

因此MF是AB與PC的公垂線.

      (II)解:連結(jié)BD交AC于O,連結(jié)BE,過O作BE的垂線OH,

        垂足H在BE上.

               易知PD⊥面MAE,故DE⊥BE,

               又OH⊥BE,故OH//DE,

               因此OH⊥面MAE.

               連結(jié)AH,則∠HAO是所要求的線AC與面NAE所成的角 

               設(shè)AB=a,則PA=3a.

               因Rt△ADE~Rt△PDA,故

              

              

(20)(本小題12分)

      解:(I)

      

             因此是極大值點(diǎn),是極小值點(diǎn).

             (II)因

       

             又由(I)知

            

             代入前面不等式,兩邊除以(1+a),并化簡(jiǎn)得

       

(21)(本小題12分)

   解法一:由題意,直線AB不能是水平線,  故可設(shè)直線方程為:.

   又設(shè),則其坐標(biāo)滿足

  • <samp id="rfpqc"><font id="rfpqc"><sup id="rfpqc"></sup></font></samp>
      <samp id="rfpqc"><source id="rfpqc"></source></samp>

            由此得  

           

            因此.

            故O必在圓H的圓周上.

            又由題意圓心H()是AB的中點(diǎn),故

           

            由前已證,OH應(yīng)是圓H的半徑,且.

            從而當(dāng)k=0時(shí),圓H的半徑最小,亦使圓H的面積最小.

            此時(shí),直線AB的方程為:x=2p.

            解法二:由題意,直線AB不能是水平線,故可設(shè)直線方程為:ky=x-2p

            又設(shè),則其坐標(biāo)滿足

         分別消去x,y得

            故得A、B所在圓的方程

            明顯地,O(0,0)滿足上面方程所表示的圓上,

            又知A、B中點(diǎn)H的坐標(biāo)為

            故

            而前面圓的方程可表示為

            故|OH|為上面圓的半徑R,從而以AB為直徑的圓必過點(diǎn)O(0,0).

            又,

            故當(dāng)k=0時(shí),R2最小,從而圓的面積最小,此時(shí)直線AB的方程為:x=2p.

            解法三:同解法一得O必在圓H的圓周上

            又直徑|AB|=

            上式當(dāng)時(shí),等號(hào)成立,直徑|AB|最小,從而圓面積最小.

            此時(shí)直線AB的方程為x=2p.

      (22)(本小題14分)

            (I)證法一:當(dāng)不等式成立.

                      

                       綜上由數(shù)學(xué)歸納法可知,對(duì)一切正整數(shù)成立.

                       證法二:當(dāng)n=1時(shí),.結(jié)論成立.

                       假設(shè)n=k時(shí)結(jié)論成立,即

                       當(dāng)的單增性和歸納假設(shè)有

                      

                       所以當(dāng)n=k+1時(shí),結(jié)論成立.

                       因此,對(duì)一切正整數(shù)n均成立.

                       證法三:由遞推公式得

                      

                       上述各式相加并化簡(jiǎn)得 

                      

            (II)解法一:

              

                       解法二:

      <kbd id="rfpqc"><abbr id="rfpqc"><var id="rfpqc"></var></abbr></kbd>

        • I

                           解法三:

                                   

                           故.

           

           

           

           

           

           

           

           

           

           

           


          同步練習(xí)冊(cè)答案