(2)數(shù)列.若對(duì)任意n均存在一個(gè)函數(shù).使得對(duì)任意的非零實(shí)數(shù)x都滿足.求:數(shù)列的通項(xiàng)公式. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)一個(gè)三角形數(shù)表按如下方式構(gòu)成:第一行依次寫(xiě)上n(n≥4)個(gè)數(shù),在上一行的每相鄰兩數(shù)的中間正下方寫(xiě)上這兩數(shù)之和,得到下一行,依此類(lèi)推.記數(shù)表中第i行的第j個(gè)數(shù)為f(i,j).
(1)若數(shù)表中第i (1≤i≤n-3)行的數(shù)依次成等差數(shù)列,
求證:第i+1行的數(shù)也依次成等差數(shù)列;
(2)已知f(1,j)=4j,求f(i,1)關(guān)于i的表達(dá)式;
(3)在(2)的條件下,若f(i,1)=(i+1)(ai-1),bi=
1
aiai+1
,試求一個(gè)函數(shù)f(x),使得Sn=b1g(1)+b2g(2)+…+bng(n)<
1
3
,且對(duì)于任意的m∈(
1
4
1
3
),均存在實(shí)數(shù)λ?,使得當(dāng)n>?λ時(shí),都有Sn>m.

查看答案和解析>>

一個(gè)三角形數(shù)表按如下方式構(gòu)成:第一行依次寫(xiě)上n(n≥4)個(gè)數(shù),在上一行的每相鄰兩數(shù)的中間正下方寫(xiě)上這兩數(shù)之和,得到下一行,依此類(lèi)推.記數(shù)表中第i行的第j個(gè)數(shù)為f(i,j).

(1)若數(shù)表中第i (1≤i≤n-3)行的數(shù)依次成等差數(shù)列,求證:第i+1行的數(shù)也依次成等差數(shù)列;

(2)已知f(1,j)=4j,求f(i,1)關(guān)于i的表達(dá)式;

(3)在(2)的條件下,若f(i,1)=(i+1)(ai-1),bi= ,試求一個(gè)函數(shù)g(x),使得

Sn=b1g(1)+b2g(2)+…+bng(n)<,且對(duì)于任意的m∈(,),均存在實(shí)數(shù)l ,使得當(dāng)n>l時(shí),都有Sn >m.

查看答案和解析>>

一個(gè)三角形數(shù)表按如下方式構(gòu)成:第一行依次寫(xiě)上n(n≥4)個(gè)數(shù),在上一行的每相鄰兩數(shù)的中間正下方寫(xiě)上這兩數(shù)之和,得到下一行,依此類(lèi)推.記數(shù)表中第i行的第j個(gè)數(shù)為f(i,j).
(1)若數(shù)表中第i (1≤i≤n-3)行的數(shù)依次成等差數(shù)列,
求證:第i+1行的數(shù)也依次成等差數(shù)列;
(2)已知f(1,j)=4j,求f(i,1)關(guān)于i的表達(dá)式;
(3)在(2)的條件下,若f(i,1)=(i+1)(ai-1),bi=,試求一個(gè)函數(shù)f(x),使得Sn=b1g(1)+b2g(2)+…+bng(n)<,且對(duì)于任意的m∈(,),均存在實(shí)數(shù)λ?,使得當(dāng)n>?λ時(shí),都有Sn>m.

查看答案和解析>>

一個(gè)三角形數(shù)表按如下方式構(gòu)成:第一行依次寫(xiě)上n(n≥4)個(gè)數(shù),在上一行的每相鄰兩數(shù)的中間正下方寫(xiě)上這兩數(shù)之和,得到下一行,依此類(lèi)推.記數(shù)表中第i行的第j個(gè)數(shù)為f(i,j).
(1)若數(shù)表中第i (1≤i≤n-3)行的數(shù)依次成等差數(shù)列,
求證:第i+1行的數(shù)也依次成等差數(shù)列;
(2)已知f(1,j)=4j,求f(i,1)關(guān)于i的表達(dá)式;
(3)在(2)的條件下,若f(i,1)=(i+1)(ai-1),bi=,試求一個(gè)函數(shù)f(x),使得Sn=b1g(1)+b2g(2)+…+bng(n)<,且對(duì)于任意的m∈(,),均存在實(shí)數(shù)λ?,使得當(dāng)n>?λ時(shí),都有Sn>m.

查看答案和解析>>

一個(gè)三角形數(shù)表按如下方式構(gòu)成:第一行依次寫(xiě)上n(n≥4)個(gè)數(shù),在上一行的每相鄰兩數(shù)的中間正下方寫(xiě)上這兩數(shù)之和,得到下一行,依此類(lèi)推.記數(shù)表中第i行的第j個(gè)數(shù)為f(i,j).

(1)若數(shù)表中第i(1≤i≤n-3)行的數(shù)依次成等差數(shù)列,求證:第i+1行的數(shù)也依次成等差數(shù)列;

(2)已知f(1,j)=4j,求f(i,1)關(guān)于i的表達(dá)式;

(3)在(2)的條件下,若f(i,1)=(i+1)(ai-1),,試求一個(gè)函數(shù)g(x),使得Sn=b1g(1)+b2g(2)+…+bng(n)<,且對(duì)于任意的,均存在實(shí)數(shù)λ,使得當(dāng)n>λ時(shí),都有Sn>m.

查看答案和解析>>


同步練習(xí)冊(cè)答案