B. 查看更多

 

題目列表(包括答案和解析)

B.已知矩陣M=
12
2x
的一個(gè)特征值為3,求另一個(gè)特征值及其對應(yīng)的一個(gè)特征向量.
C.在極坐標(biāo)系中,圓C的方程為ρ=2
2
sin(θ+
π
4
)
,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=t
y=1+2t
(t為參數(shù)),判斷直線l和圓C的位置關(guān)系.

查看答案和解析>>

B.選修4-2:矩陣與變換
設(shè)a>0,b>0,若矩陣A=
.
a0
0b
.
把圓C:x2+y2=1變換為橢圓E:
x2
4
+
y2
3
=1.
(1)求a,b的值;
(2)求矩陣A的逆矩陣A-1
C.選修4-4:坐標(biāo)系與參數(shù)方程在極坐標(biāo)系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-
π
6
)=a截得的弦長為2
3
,求實(shí)數(shù)a的值.

查看答案和解析>>

B.(不等式選做題)若關(guān)于x的方程x2+x+|a-
14
|+|a|=0(a∈R)
有實(shí)根,則a的取值范圍是
 

查看答案和解析>>

B.選修4-2:矩陣與變換

試求曲線在矩陣MN變換下的函數(shù)解析式,其中M =,N =

查看答案和解析>>

B.選修4-2:矩陣與變換
已知矩陣A,其中,若點(diǎn)在矩陣A的變換下得到
(1)求實(shí)數(shù)的值;
(2)矩陣A的特征值和特征向量.

查看答案和解析>>

一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。

題號

1

2

3

4

5

6

7

8

9

10

答案

B

B

D

D

C

A

C

B

A

C

二、填空題:本大題共6小題,每小題4分,共24分。把答案填在題中橫線上。

11.13     12.       13.2     14.4       15.      16.1005

三、解答題:本大題共6小題,共78分。解答應(yīng)寫出文字說明,證明過程或演算步驟。

17.(本小題滿分12分)

解(I)

      

  (Ⅱ)由,

       

18.(本小題滿分12分)

解(I)記事件A;射手甲剩下3顆子彈,

      

   (Ⅱ)記事件甲命中1次10環(huán),乙命中兩次10環(huán),事件;甲命中2次10環(huán),乙命中1次10環(huán),則四次射擊中恰有三次命中10環(huán)為事件

(Ⅲ)的取值分別為16,17,18,19,20,

     

19.(本小題滿分12分)

解法一:

(I)設(shè)的中點(diǎn),連結(jié),

  的中點(diǎn),的中點(diǎn),

==(//)==(//)

==(//)

   

(Ⅱ)

 

(Ⅲ)過點(diǎn)作垂線,垂足為,連結(jié),

   

解法二:

分別以所在直線為坐標(biāo)軸建立空間直角坐標(biāo)系,

(I)

     

 (Ⅱ)設(shè)平面的一個(gè)法向量為

      

(Ⅲ)平面的一個(gè)法向量為

     

 

20.(本小題滿分12分)

   (1)由

        切線的斜率切點(diǎn)坐標(biāo)(2,5+

        所求切線方程為

   (2)若函數(shù)為上單調(diào)增函數(shù),

        則上恒成立,即不等式上恒成立

        也即上恒成立。

        令上述問題等價(jià)于

        而為在上的減函數(shù),

        則于是為所求

21.(本小題滿分14分)

解(I)設(shè)

       

 (Ⅱ)(1)當(dāng)直線的斜率不存在時(shí),方程為

      

      

  (2)當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,

       設(shè),

      ,得

      

      

      

              

22.(本小題滿分14分)

解(I)由題意,令

      

 (Ⅱ)

      

  (1)當(dāng)時(shí),成立:

  (2)假設(shè)當(dāng)時(shí)命題成立,即

       當(dāng)時(shí),

      

 


同步練習(xí)冊答案