故的取值范圍是, ----------7分 查看更多

 

題目列表(包括答案和解析)

下面是一道選擇題的兩種解法,兩種解法看似都對(duì),可結(jié)果并不一致,問題出在哪兒?
[題]在△ABC中,a=x,b=2,B=45°,若△ABC有兩解,則x的取值范圍是( 。
A.(2,+∞)B.(0,2)C.(2,  2
2
)
D.(
2
,  2)

[解法1]△ABC有兩解,asinB<b<a,xsin45°<2<x,即2<x<2
2
,故選C.
[解法2]
a
sinA
=
b
sinB
sinA=
asinB
b
=
xsin45°
2
=
2
x
4

△ABC有兩解,bsinA<a<b,
2
x
4
<x<2
,即0<x<2,故選B.
你認(rèn)為
解法1
解法1
是正確的  (填“解法1”或“解法2”)

查看答案和解析>>

已知,函數(shù)

(1)當(dāng)時(shí),求函數(shù)在點(diǎn)(1,)的切線方程;

(2)求函數(shù)在[-1,1]的極值;

(3)若在上至少存在一個(gè)實(shí)數(shù)x0,使>g(xo)成立,求正實(shí)數(shù)的取值范圍。

【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。(1)中,那么當(dāng)時(shí),  又    所以函數(shù)在點(diǎn)(1,)的切線方程為;(2)中令   有 

對(duì)a分類討論,和得到極值。(3)中,設(shè),依題意,只需那么可以解得。

解:(Ⅰ)∵  ∴

∴  當(dāng)時(shí),  又    

∴  函數(shù)在點(diǎn)(1,)的切線方程為 --------4分

(Ⅱ)令   有 

①         當(dāng)時(shí)

(-1,0)

0

(0,

,1)

+

0

0

+

極大值

極小值

的極大值是,極小值是

②         當(dāng)時(shí),在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

綜上所述   時(shí),極大值為,無極小值

時(shí)  極大值是,極小值是        ----------8分

(Ⅲ)設(shè),

對(duì)求導(dǎo),得

,    

在區(qū)間上為增函數(shù),則

依題意,只需,即 

解得  (舍去)

則正實(shí)數(shù)的取值范圍是(,

 

查看答案和解析>>

某省環(huán)保研究所對(duì)市中心每天環(huán)境放射性污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合放射性污染指數(shù)與時(shí)刻(時(shí)) 的關(guān)系為,其中是與氣象有關(guān)的參數(shù),且

(1)令, ,寫出該函數(shù)的單調(diào)區(qū)間,并選擇其中一種情形進(jìn)行證明;

(2)若用每天的最大值作為當(dāng)天的綜合放射性污染指數(shù),并記作,求;

(3)省政府規(guī)定,每天的綜合放射性污染指數(shù)不得超過2,試問目前市中心的綜合放射性污染指數(shù)是否超標(biāo)?

【解析】第一問利用定義法求證單調(diào)性,并判定結(jié)論。

第二問(2)由函數(shù)的單調(diào)性知,

,即t的取值范圍是. 

當(dāng)時(shí),記

 

上單調(diào)遞減,在上單調(diào)遞增,

第三問因?yàn)楫?dāng)且僅當(dāng)時(shí),.

故當(dāng)時(shí)不超標(biāo),當(dāng)時(shí)超標(biāo).

 

查看答案和解析>>

已知曲線C:(m∈R)

(1)   若曲線C是焦點(diǎn)在x軸點(diǎn)上的橢圓,求m的取值范圍;

(2)     設(shè)m=4,曲線c與y軸的交點(diǎn)為A,B(點(diǎn)A位于點(diǎn)B的上方),直線y=kx+4與曲線c交于不同的兩點(diǎn)M、N,直線y=1與直線BM交于點(diǎn)G.求證:A,G,N三點(diǎn)共線。

【解析】(1)曲線C是焦點(diǎn)在x軸上的橢圓,當(dāng)且僅當(dāng)解得,所以m的取值范圍是

(2)當(dāng)m=4時(shí),曲線C的方程為,點(diǎn)A,B的坐標(biāo)分別為,

,得

因?yàn)橹本與曲線C交于不同的兩點(diǎn),所以

設(shè)點(diǎn)M,N的坐標(biāo)分別為,則

直線BM的方程為,點(diǎn)G的坐標(biāo)為

因?yàn)橹本AN和直線AG的斜率分別為

所以

,故A,G,N三點(diǎn)共線。

 

查看答案和解析>>

下面是一道選擇題的兩種解法,兩種解法看似都對(duì),可結(jié)果并不一致,問題出在哪兒?
[題]在△ABC中,a=x,b=2,B=45°,若△ABC有兩解,則x的取值范圍是( 。
A.(2,+∞)B.(0,2)C.(2,  2
2
)
D.(
2
,  2)

[解法1]△ABC有兩解,asinB<b<a,xsin45°<2<x,即2<x<2
2
,故選C.
[解法2]
a
sinA
=
b
sinB
,sinA=
asinB
b
=
xsin45°
2
=
2
x
4

△ABC有兩解,bsinA<a<b,
2
x
4
<x<2
,即0<x<2,故選B.
你認(rèn)為______是正確的  (填“解法1”或“解法2”)

查看答案和解析>>


同步練習(xí)冊(cè)答案