A. ≥2 B. ≥0 查看更多

 

題目列表(包括答案和解析)

已知|
a
|=2|
b
|≠0
,且關于x的方程x2+|
a
|x+
a
b
=0
有實根,則
a
b
的夾角的取值范圍是(  )
A、[0,
π
6
]
B、[
π
3
,π]
C、[
π
3
,
3
]
D、[
π
6
,π]

查看答案和解析>>

已知|
a
|=2|
b
|≠0,且關于x的函數(shù)f(x)=
1
3
x3+
1
2
|
a
|x2+
a
b
x在R上有極值,則
a
b
的夾角范圍為
 

查看答案和解析>>

2、“a=2”是“直線ax+2y=0平行于直線x+y=1”的(  )

查看答案和解析>>

已知|
a
|=2|
b
|≠0
,且關于x的函數(shù)f(x)=
1
3
x3+
1
2
|
a
|x2+
a
b
x
在R上有極值,則
a
b
的夾角范圍為( 。
A、(0,
π
6
)
B、(
π
6
,π]
C、(
π
3
,π]
D、(
π
3
,
3
]

查看答案和解析>>

4、“a=-2”是“直線x+2y=0垂直于直線ax+y=1”的( 。

查看答案和解析>>

一、選擇題:

1. D 2. B  3. A  4. D  5. C  6. B  7. D  8. A  9. C  10. B  11. A   12. B

二、填空題:

13. 5;14. 18 ;15. 2 ;16. ③④

三、解答題:

17. 解:(1) 由已知得,即,………………2分

所以數(shù)列{}是以1為首項,公差2的等差數(shù)列.…………………………4分

.………………………………………5分

(2) 由(1)知:,從而.…………………………7分

………………………………9分

……………………12分

18. 解:(1)……2分

……………………4分

………………………6分

(2) ∵

(k∈Z);…………………… 8分

≤x≤(k∈Z);…………………………10分

的單調遞增區(qū)間為[,] (k∈Z)……………………12分

19. (1)解:把4名獲書法比賽一等獎的同學編號為1,2,3,4,2名獲繪畫比賽一等獎的同學編號為5,6.從6名同學中任選兩名的所有可能結果如下:(1,2),(1,3),(1,4),(1,5), (1,6),(2,3),(2,4),(2,5), (2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15個.…………………4分

(1) 從6名同學中任選兩名,都是書法比賽一等獎的所有可能是:(1,2),(1,3),(1,4), (2,3),(2,4),(3,4),共6個.…………………………6分

∴選出的兩名志愿者都是書法比賽一等獎的概率.…………………8分

(2) 從6名同學中任選兩名,一名是書法比賽一等獎,另一名是繪畫比賽一等獎的所有可能是:(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8個.………………………10分

∴選出的兩名志愿者一名是書法比賽一等獎,另一名是繪畫比賽一等獎的概率是.………………………12分

20. 解:(1) 取AB的中點G,連FG,可得FG∥AE,F(xiàn)G=AE,又CD⊥平面ABC,AE⊥平面ABC,∴CD∥AE,CD=AE………………………2分

∴FG∥CD,F(xiàn)G=CD,∵FG⊥平面ABC……………4分

∴四邊形CDFG是矩形,DF∥CG,CG平面ABC,

DF平面ABC∴DF∥平面ABC…………………6分

(2) Rt△ABE中,AE=2a,AB=2a,F(xiàn)為BE中點,∴AF⊥BE

∵△ABC是正三角形,∴CG⊥AB,∴DF⊥AB…………9分

又DF⊥FG,∴DF⊥平面ABE,DF⊥AF,

∴AF⊥平面BDF,∴AF⊥BD.……………………12分

21. 解:(1)與圓相切,則,即,所以,

………………………3分

則由,消去y得:  (*)

由Δ=,∴………………4分

(2) 設,由(*)得,.…………5分

.…………………………6分

,所以.∴k=±1.

.,∴………………………7分

.…………………8分

(3) 由(2)知:(*)為

由弦長公式得

 … 10分

所以………………………12分

22. (1) 解:設x∈(0,1],則-x∈[-1,0),∴………………1分

是奇函數(shù).∴=………………………2分

∴當x∈(0,1]時, ,…………………3分

………………………………4分

(2) 當x∈(0,1]時,∵…………………6分

,x∈(0,1],≥1,

.………………………7分

.……………………………8分

在(0,1]上是單調遞增函數(shù).…………………9分

(3) 解:當時, 在(0,1]上單調遞增. ,

(不合題意,舍之),………………10分

時,由,得.……………………………11分

如下表:

1

>0

0

<0

 

最大值

   ㄋ

 

由表可知: ,解出.……………………12分

此時∈(0,1)………………………………13分

∴存在,使在(0,1]上有最大值-6.………………………14分

 

 

 

 


同步練習冊答案