好與直線:相切.(Ⅰ)求橢圓的方程, 查看更多

 

題目列表(包括答案和解析)

設(shè)橢圓的左、右焦點分別為、,上頂點為,在軸負(fù)半軸上有一點,滿足,且

 (Ⅰ)求橢圓的離心率;

(Ⅱ)若過、三點的圓恰好與直線相切,求橢圓的方程;                       

(Ⅲ)在(Ⅱ)的條件下,過右焦點作斜率為的直線與橢圓交于、兩點,

若點使得以為鄰邊的平行四邊形是菱形,求的取值范圍.      

 

查看答案和解析>>

(本小題滿分12分)

已知點,過點作拋物線的切線,切點在第二象限,如圖.

(Ⅰ)求切點的縱坐標(biāo);

(Ⅱ)若離心率為的橢圓  恰好經(jīng)過切點,設(shè)切線交橢圓的另一點為,記切線的斜率分別為,若,求橢圓方程.

21(本小題滿分12分)

已知函數(shù) .

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時,恒成立,求實數(shù)的取值范圍;

(3)證明:.

22.選修4-1:幾何證明選講

如圖,是圓的直徑,是弦,的平分線交圓于點,,交的延長線于點,于點

(1)求證:是圓的切線;

(2)若,求的值。

23.選修4—4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線過點且傾斜角為,以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線與曲線相交于兩點;

(1)若,求直線的傾斜角的取值范圍;

(2)求弦最短時直線的參數(shù)方程。

24. 選修4-5 不等式選講

已知函數(shù)

   (I)試求的值域;

   (II)設(shè),若對,恒有成立,試求實數(shù)a的取值范圍。

查看答案和解析>>

(本題13分)

    設(shè)橢圓的左、右焦點分別為,上頂點為,過點垂直的直線交軸負(fù)半軸于點,且

   (Ⅰ)求橢圓的離心率;

   (Ⅱ)若過、三點的圓恰好與直線

相切,求橢圓的方程;

   (III)在(Ⅱ)的條件下,過右焦點作斜率為的直線與橢圓交于、兩點,在軸上是否存在點使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍,如果不存在,說明理由.

 

查看答案和解析>>

設(shè)橢圓C:的左、右焦點分別為F1、F2,上頂點為A,在x軸負(fù)半軸上有一點B,滿足,且AB⊥AF2

(Ⅰ)求橢圓C的離心率;

(Ⅱ)若過A、B、F2三點的圓恰好與直線相切,求橢圓C的方程;                     

(Ⅲ)在(Ⅱ)的條件下,過右焦點F2作斜率為k的直線l與橢圓C交于M、N兩點,若點P(m,0)使得以PM,PN為鄰邊的平行四邊形是菱形,求的取值范圍.

查看答案和解析>>

設(shè)橢圓C:的左、右焦點分別為F1、F2,上頂點為A,在x軸負(fù)半軸上有一點B,滿足,且AB⊥AF2
(Ⅰ)求橢圓C的離心率;
(Ⅱ)若過A、B、F2三點的圓恰好與直線相切,求橢圓C的方程;                      
(Ⅲ)在(Ⅱ)的條件下,過右焦點F2作斜率為k的直線l與橢圓C交于M、N兩點,若點P(m,0)使得以PM,PN為鄰邊的平行四邊形是菱形,求的取值范圍.

查看答案和解析>>


同步練習(xí)冊答案