已知函數(shù). 查看更多

 

題目列表(包括答案和解析)

(理科做)已知函數(shù)f(x)=lnx-a2x2+ax(a≥0).
(1)當(dāng)a=1時(shí),證明函數(shù)f(x)只有一個(gè)零點(diǎn);
(2)若函數(shù)f(x)在區(qū)間(1,+∞)上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

(理科做)已知函數(shù)f(x)=x3+ax+b定義在區(qū)間[-1,1]上,且f(0)=f(1).又P(x1•y1)、Q(x2•y2)是其圖象上任意兩點(diǎn)(x1≠x2).
(1)求證:f(x)的圖象關(guān)于點(diǎn)(0,b)成中心對(duì)稱圖形;
(2)設(shè)直線PQ的斜率為k,求證:|k|<2;
(3)若0≤x1<x2≤1,求證:|y1-y2|<1.

查看答案和解析>>

(理科做)已知函數(shù)f(x)=f'(0)cosx+sinx,則函數(shù)f(x)在x0=
π
2
處的切線方程是( 。

查看答案和解析>>

(理科做)已知函數(shù)f(x)=x2-ax+3在(0,1)上為減函數(shù),函數(shù)g(x)=x2-alnx在區(qū)間(1,2)上為增函數(shù).
(1)求實(shí)數(shù)a的值;
(2)當(dāng)-1<m<0時(shí),判斷方程f(x)=2g(x)+m的解的個(gè)數(shù),并說明理由;
(3)設(shè)函數(shù)y=f(bx)(其中0<b<1)的圖象C1與函數(shù)y=g(x)的圖象C2交于P、Q,過線段PQ的中點(diǎn)作x軸的垂線分別交C1、C2于點(diǎn)M、N.證明:曲線C1在點(diǎn)M處的切線與曲線C2在點(diǎn)N處的切線不平行.

查看答案和解析>>

(理科做)已知函數(shù)f(x)=x3+ax+b定義在區(qū)間[-1,1]上,且f(0)=f(1).又P(x1•y1)、Q(x2•y2)是其圖象上任意兩點(diǎn)(x1≠x2).
(1)求證:f(x)的圖象關(guān)于點(diǎn)(0,b)成中心對(duì)稱圖形;
(2)設(shè)直線PQ的斜率為k,求證:|k|<2;
(3)若0≤x1<x2≤1,求證:|y1-y2|<1.

查看答案和解析>>

1-12  BDBDA    BABCABD

13.?2

14.2n1-n-2

15.7

16.90

17.(1)∵.

(2)證明:由已知,

,

.

18.(1)由,當(dāng)時(shí),,顯然滿足,

,

∴數(shù)列是公差為4的遞增等差數(shù)列.

(2)設(shè)抽取的是第項(xiàng),則,.

,

,∴,

.

故數(shù)列共有39項(xiàng),抽取的是第20項(xiàng).

19.。

①+②得

,

20.(1)由條件得: .

(2)假設(shè)存在使成立,則    對(duì)一切正整數(shù)恒成立.

, 既.

故存在常數(shù)使得對(duì)于時(shí),都有恒成立.

21.(1)第1年投入800萬元,第2年投入800×(1-)萬元……,

n年投入800×(1-n1萬元,

所以總投入an=800+800(1-)+……+800×(1-n1=4000[1-(n

同理:第1年收入400萬元,第2年收入400×(1+)萬元,……,

n年收入400×(1+n1萬元

bn=400+400×(1+)+……+400×(1+n1=1600×[(n-1]

(2)∴bnan>0,1600[(n-1]-4000×[1-(n]>0

化簡(jiǎn)得,5×(n+2×(n-7>0

設(shè)x=(n,5x2-7x+2>0

x,x>1(舍),即(n,n≥5.

22.(文)

(1)當(dāng)時(shí),

,即 ,

.

    <strong id="6uosy"></strong>
    • <noscript id="6uosy"><li id="6uosy"></li></noscript><optgroup id="6uosy"><rt id="6uosy"></rt></optgroup>

      (1)

      (2)

      由(1)得

      當(dāng)

      成立

      故所得數(shù)列不符合題意.

      當(dāng)

      .

      綜上,共有3個(gè)滿足條件的無窮等差數(shù)列:

      ①{an} : an=0,即0,0,0,…;

      ②{an} : an=1,即1,1,1,…;

      ③{an} : an=2n-1,即1,3,5,…,

      (理)

      (1)由已知得:,

      ,

      ,

      .

      (2)由,∴,

      ,  ∴是等比數(shù)列.

      ,∴ ,

      ,

       ,當(dāng)時(shí),,

      . ,

      .


      同步練習(xí)冊(cè)答案
      <optgroup id="6uosy"></optgroup>