知方程有兩個不等實根.設(shè)為. 查看更多

 

題目列表(包括答案和解析)

已知實數(shù),設(shè)P:函數(shù)在R上單調(diào)遞減,

Q:關(guān)于的一元二次方程有兩個不相等的實數(shù)根,

如果命題“”為真命題,命題“”為假命題,求實數(shù)c的取值范圍.

 

查看答案和解析>>

已知,設(shè)是方程的兩個根,不等式對任意實數(shù)恒成立;函數(shù)有兩個不同的零點.求使“P且Q”為真命題的實數(shù)的取值范圍.

【解析】本試題主要考查了命題和函數(shù)零點的運用。由題設(shè)x1+x2=a,x1x2=-2,

∴|x1-x2|=.

當a∈[1,2]時,的最小值為3. 當a∈[1,2]時,的最小值為3.

要使|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判別式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

可得到要使“P∧Q”為真命題,只需P真Q真即可。

解:由題設(shè)x1+x2=a,x1x2=-2,

∴|x1-x2|=.

當a∈[1,2]時,的最小值為3.

要使|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判別式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

綜上,要使“P∧Q”為真命題,只需P真Q真,即

解得實數(shù)m的取值范圍是(4,8]

 

查看答案和解析>>

已知函數(shù),且方程有兩個實根為

(1)求函數(shù)的解析式 ; 

(2)設(shè),解關(guān)于x的不等式:

 

查看答案和解析>>

已知函數(shù),且方程有兩個實根為

(1)求函數(shù)的解析式 ; 

(2)設(shè),解關(guān)于x的不等式:

 

查看答案和解析>>

已知函數(shù),且方程有兩個實根為
(1)求函數(shù)的解析式 ; 
(2)設(shè),解關(guān)于x的不等式:

查看答案和解析>>


同步練習冊答案