17.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn=2n+1-2.{bn }是公差不為0的等差數(shù)列. 其中b2.b4.b9依次成等比數(shù)列.且a2=b2 (1)求數(shù)列{an }和{bn}的通項(xiàng)公式: 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

設(shè){an}是正數(shù)組成的數(shù)列,其前n項(xiàng)和為Sn,并且對(duì)于所有的n N+,都有。

(1)寫出數(shù)列{an}的前3項(xiàng);

(2)求數(shù)列{an}的通項(xiàng)公式(寫出推證過(guò)程);

(3)設(shè),是數(shù)列{bn}的前n項(xiàng)和,求使得對(duì)所有n N+都成立的最小正整數(shù)的值。

 

 

 

 

 

查看答案和解析>>

(本小題滿分14分)

已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=其中λ為實(shí)數(shù),n為正整數(shù)。

(Ⅰ)對(duì)任意實(shí)數(shù)λ,證明數(shù)列{an}不是等比數(shù)列;

(Ⅱ)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;

(Ⅲ)設(shè)0<ab,Sn為數(shù)列{bn}的前n項(xiàng)和。是否存在實(shí)數(shù)λ,使得對(duì)任意正整數(shù)n,都有

aSnb?若存在,求λ的取值范圍;若不存在,說(shuō)明理由。

查看答案和解析>>

(本小題滿分14分)

已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=其中λ為實(shí)數(shù),n為正整數(shù)。

(Ⅰ)對(duì)任意實(shí)數(shù)λ,證明數(shù)列{an}不是等比數(shù)列;

(Ⅱ)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;

(Ⅲ)設(shè)0<abSn為數(shù)列{bn}的前n項(xiàng)和。是否存在實(shí)數(shù)λ,使得對(duì)任意正整數(shù)n,都有

aSnb?若存在,求λ的取值范圍;若不存在,說(shuō)明理由。

查看答案和解析>>

(本小題滿分14分)
已知數(shù)列{an}和{bn}滿足:a1=λan+1=其中λ為實(shí)數(shù),n為正整數(shù)。
(Ⅰ)對(duì)任意實(shí)數(shù)λ,證明數(shù)列{an}不是等比數(shù)列;
(Ⅱ)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;
(Ⅲ)設(shè)0<ab,Sn為數(shù)列{bn}的前n項(xiàng)和。是否存在實(shí)數(shù)λ,使得對(duì)任意正整數(shù)n,都有
aSnb?若存在,求λ的取值范圍;若不存在,說(shuō)明理由。

查看答案和解析>>

(本小題滿分14分)

已知數(shù)列{an}和{bn}滿足:a1=λan+1=其中λ為實(shí)數(shù),n為正整數(shù)。

(Ⅰ)對(duì)任意實(shí)數(shù)λ,證明數(shù)列{an}不是等比數(shù)列;

(Ⅱ)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;

(Ⅲ)設(shè)0<ab,Sn為數(shù)列{bn}的前n項(xiàng)和。是否存在實(shí)數(shù)λ,使得對(duì)任意正整數(shù)n,都有

aSnb?若存在,求λ的取值范圍;若不存在,說(shuō)明理由。

 

查看答案和解析>>


同步練習(xí)冊(cè)答案