題目列表(包括答案和解析)
1 |
3 |
x1+x2 |
2 |
f(x1)+f(x2) |
2 |
(本小題滿分12分)已知函數(,)為偶函數,且函數圖象的兩相鄰對稱軸間的距離為.
(1)求的值;
(2)將函數的圖象向右平移個單位后,縱坐標不變,得到函數的
圖象,求的單調遞減區(qū)間.
(本小題12分)已知函數(,)為偶函數,且函數圖象的兩相鄰對稱軸間的距離為.
(1)求和的值;
(2)將函數的圖象向右平移個單位后,得到函數的圖象,求的單調遞減區(qū)間.
已知.
(1)求的單調區(qū)間;
(2)證明:當時,恒成立;
(3)任取兩個不相等的正數,且,若存在使成立,證明:.
【解析】(1)g(x)=lnx+,= (1’)
當k0時,>0,所以函數g(x)的增區(qū)間為(0,+),無減區(qū)間;
當k>0時,>0,得x>k;<0,得0<x<k∴增區(qū)間(k,+)減區(qū)間為(0,k)(3’)
(2)設h(x)=xlnx-2x+e(x1)令= lnx-1=0得x=e, 當x變化時,h(x),的變化情況如表
x |
1 |
(1,e) |
e |
(e,+) |
|
- |
0 |
+ |
|
h(x) |
e-2 |
↘ |
0 |
↗ |
所以h(x)0, ∴f(x)2x-e (5’)
設G(x)=lnx-(x1) ==0,當且僅當x=1時,=0所以G(x) 為減函數, 所以G(x) G(1)=0, 所以lnx-0所以xlnx(x1)成立,所以f(x) ,綜上,當x1時, 2x-ef(x)恒成立.
(3) ∵=lnx+1∴l(xiāng)nx0+1==∴l(xiāng)nx0=-1 ∴l(xiāng)nx0 –lnx=-1–lnx===(10’) 設H(t)=lnt+1-t(0<t<1), ==>0(0<t<1), 所以H(t) 在(0,1)上是增函數,并且H(t)在t=1處有意義, 所以H(t) <H(1)=0∵∴=
∴l(xiāng)nx0 –lnx>0, ∴x0 >x
已知函數(,)為偶函數,
且函數圖象的兩相鄰對稱軸間的距離為.
求的值;
將函數的圖象向右平移個單位后,得到函數的圖象,求的單調遞減區(qū)間.
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com