(2)若求實數(shù)k的值 查看更多

 

題目列表(包括答案和解析)

若實數(shù)x、y、m滿足|x-m|>|y-m|,則稱x比y遠離m.
(1)若x2-1比1遠離0,求x的取值范圍;
(2)對任意兩個不相等的正數(shù)a、b,證明:a3+b3比a2b+ab2遠離2ab
ab

(3)已知函數(shù)f(x)的定義域D={{x|x≠
2
+
π
4
,k∈Z,x∈R}
.任取x∈D,f(x)等于sinx和cosx中遠離0的那個值.寫出函數(shù)f(x)的解析式,并指出它的基本性質(zhì)(結(jié)論不要求證明).

查看答案和解析>>

若實數(shù)x、y、m滿足|x-m|<|y-m|,則稱x比y接近m.
(1)若x2-1比3接近0,求x的取值范圍;
(2)對任意兩個不相等的正數(shù)a、b,證明:a2b+ab2比a3+b3接近2ab
ab

(3)已知函數(shù)f(x)的定義域D{x|x≠kπ,k∈Z,x∈R}.任取x∈D,f(x)等于1+sinx和1-sinx中接近0的那個值.寫出函數(shù)f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和單調(diào)性(結(jié)論不要求證明).

查看答案和解析>>

若實數(shù)x,y,m滿足|x-m|>|y-m|,則稱x比y遠離m.
(Ⅰ)若x2-1比1遠離0,求x的取值范圍;
(Ⅱ)已知函數(shù)f(x)的定義域D={x|x≠
2
+
π
4
,k∈Z,x∈R}
.任取x∈D,f(x)等于sinx和cosx中遠離0的那個值.寫出函數(shù)f(x)的解析式,并指出它的基本性質(zhì)(結(jié)論不要求證明).

查看答案和解析>>

設(shè)實數(shù)x,y同時滿足條件:4x2-9y2=36,且xy<0.
(1)求函數(shù)y=f(x)的解析式和定義域;
(2)判斷函數(shù)y=f(x)的奇偶性;
(3)若方程f(x)=k(x-1)(k∈R)恰有兩個不同的實數(shù)根,求k的取值范圍.

查看答案和解析>>

若實數(shù)x、y、m滿足|x-m|>|y-m|,則稱x比y遠離m,
(Ⅰ)若x2-1比1遠離0,求x的取值范圍;
(Ⅱ)對任意兩個不相等的正數(shù)a、b,證明:a3+b3比a2b+ab2遠離2ab;
(Ⅲ)已知函數(shù)f(x)的定義域D={x|x≠,k∈Z,x∈R},任取x∈D,f(x)等于sinx和cosx中遠離0的那個值.寫出函數(shù)f(x)的解析式,并指出它的基本性質(zhì)(結(jié)論不要求證明).

查看答案和解析>>

 

一、選擇題:DBDBD  CABCA  AC

二、填空題

13.5  

14.2

15.

16.①②④

17.解:(1)

   (2)

 

 

18.解:

19.解:(1)

時,為增函數(shù)

   (2)當時,

,

時,

20.解(1)已知等差數(shù)列

   (2)當

   (3)由題意,

 

是一個單調(diào)增數(shù)列,要恒成立,只須,故 又因的最大值為7。

21.解:(Ⅰ)由已知數(shù)據(jù),易知函數(shù)的周期T=12

振幅A=3    b=10

   (Ⅱ)由題意,該船進出港時,水深應不小于5+6.5=11.5(米)

解得,

在同一天內(nèi),取k=0或1

∴該船最早能在凌晨1時進港,下午17時出港,在港口內(nèi)最多停留16個小時

22.解:

   (1)令

在R上任取

   (2)要使

      

法2:


同步練習冊答案