(理)已知正項(xiàng)數(shù)列{an}前n項(xiàng)和為Sn.且 (1)求數(shù)列{an}的通項(xiàng)公式, 查看更多

 

題目列表(包括答案和解析)

已知正項(xiàng)數(shù)列{an}的前項(xiàng)和為Sn,且滿足Sn+an=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)cn=
1an
,則是否存在數(shù)列{bn},滿足b1c1+b2c2+…+bncn=(2n-1)2n+1+2對(duì)一切正整數(shù)n都成立?若存在,請(qǐng)求出數(shù)列{bn}的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知正項(xiàng)數(shù)列{an}的前項(xiàng)和為Sn,且滿足Sn+an=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)學(xué)公式,則是否存在數(shù)列{bn},滿足數(shù)學(xué)公式對(duì)一切正整數(shù)n都成立?若存在,請(qǐng)求出數(shù)列{bn}的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知正項(xiàng)數(shù)列{an}的前項(xiàng)和為Sn,且滿足Sn+an=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè),則是否存在數(shù)列{bn},滿足對(duì)一切正整數(shù)n都成立?若存在,請(qǐng)求出數(shù)列{bn}的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知正項(xiàng)數(shù)列an滿足:a1=1,n≥2時(shí),(n-1)an2=nan-12+n2-n.
(1)求數(shù)列an的通項(xiàng)公式;
(2)設(shè)an=2n•bn,數(shù)列bn的前n項(xiàng)和為Sn,是否存在正整數(shù)m,使得對(duì)任意的n∈N*,m-3<Sn<m恒成立?若存在,求出所有的正整數(shù)m;若不存在,說(shuō)明理由.

查看答案和解析>>

已知正項(xiàng)數(shù)列{an}滿足a1=1,an+1=an2+2an(n∈N+),令bn=log2(an+1).
(1)求證:數(shù)列{bn}為等比數(shù)列;
(2)記Tn為數(shù)列{
1
log2bn+1log2bn+2
}
的前n項(xiàng)和,是否存在實(shí)數(shù)a,使得不等式Tn<log0.5(a2-
1
2
a)
對(duì)?n∈N+恒成立?若存在,求出實(shí)數(shù)a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

一、選擇題(本大題共12小題,每題5分,共60分)

1.A    2.B    3.C    4.A    5.D    6.C    7.B    8.C    9.A

10.B   11.(理)C(文)B       12.D

二、填空題(本大題共4小題,每題4分,共16分)

13.                            14.②③                  15.47                     16.□

三、解答題(本大題共6小題,共計(jì)76分)

17.解:(1)依題意函數(shù)的圖象按向量平移后得

                                                ………………………2分

       即=                                                ………………………4分

       又

       比較得a=1,b=0                                                                     ………………………6分

   (2)

       =                                                              ………………………9分

      

      

       ∴的單調(diào)增區(qū)間為[,]          ……………………12分

18.解:

   (1)設(shè)連對(duì)的個(gè)數(shù)為y,得分為x

       因?yàn)閥=0,1,2,4,所以x=0,2,4,8.

      

        1. <style id="cwqq7"></style>

          <delect id="cwqq7"></delect>

            x

            0

            2

            4

            8

               

                   于是x的分布列為

            • ……9分

               

               

                 (2)Ex=0×+2×+4×+8×=2

                     即該人得分的期望為2分。                                                     ……………………12分

                 (文)

                 (1)從口袋A中摸出的3個(gè)球?yàn)樽罴衙蚪M合即為從口袋A中摸出2個(gè)紅球和一個(gè)黑球

                     其概念為                                                     ……………………6分

                 (2)由題意知:每個(gè)口袋中摸球?yàn)樽罴呀M合的概率相同,從5個(gè)口袋中摸球可以看成5

                     次獨(dú)立重復(fù)試驗(yàn),故所求概率為………………………12分

              19.解法一:以D為原點(diǎn),DA,DC,DD1

                     所在直線分別為x軸、y軸、z軸,建

                     立空間直角坐標(biāo)系D―xyz,則

                     A(a,0,0)、B(a,2a,0)、

                     C(0,2a,0)、A1(a,0,a)、

                     D1(0,0,a)。E、P分別是BC、A1D1

                     的中點(diǎn),M、N分別是AE、CD1的中點(diǎn)

                     ∴……………………………………2分

                 (1)⊥面ADD1A1

                     而=0,∴,又∵M(jìn)N面ADD1A1,∴MN∥面ADD1A1;………4分

                 (2)設(shè)面PAE的法向量為,又

                     則又

                     ∴=(4,1,2),又你ABCD的一個(gè)法向量為=(0,0,1)

                     ∴

                     所以二面角P―AE―D的大小為                        ………………………8分

                 (3)設(shè)為平面DEN的法向量,

                     又=(),=(0,a),,0,a)

                     ∴所以面DEN的一個(gè)法向量=(4,-1,2)

                     ∵P點(diǎn)到平面DEN的距離為

                     ∴

                    

                     所以                                              ……………………12分

                     解法二:

                 (1)證明:取CD的中點(diǎn)為K,連接

                     ∵M(jìn),N,K分別為AE,CD1,CD的中點(diǎn)

                     ∴MK∥AD,ND∥DD1,∴MK∥面ADD1A1,NK∥面ADD1A1

                     ∴面MNK∥面ADD1A1,∴MN∥面ADD1A1,                      ………………………4分

                 (2)設(shè)F為AD的中點(diǎn),∵P為A1D1的中點(diǎn)

                     ∴PF∥DD1,PF⊥面ABCD

                     作FH⊥AE,交AE于H,連結(jié)PH,則由三垂

                     線定理得AE⊥PH,從而∠PHF為二面角

                     P―AE―D的平面角。

                     在Rt△AAEF中,AF=,EF=2,AE=

                     從而FH=

                     在Rt△PFH中,tan∠PHF=

                     故:二面角P―AE―D的大小為arctan

                 (3)

                     作DQ⊥CD1,交CD1于Q,

                     由A1D1⊥面CDD1C1,得A1D1⊥DQ,∴DQ⊥面BCD1A1

                     在Rt△CDD1中,

                     ∴  ……………………12分

              20.解:(理)

                 (1)函數(shù)的定義域?yàn)椋?,+

                     當(dāng)a=-2e時(shí),              ……………………2分

                     當(dāng)x變化時(shí),的變化情況如下:

              (0,

              ,+

              0

              極小值

                     由上表可知,函數(shù)的單調(diào)遞減區(qū)間為(0,

                     單調(diào)遞增區(qū)間為(,+

                     極小值是)=0                                                            ……………………6分

                 (2)由           ……………………7分

                     又函數(shù)為[1,4]上單調(diào)減函數(shù),

                     則在[1,4]上恒成立,所以不等式在[1,4]上恒成立。

                     即在,[1,4]上恒成立                                           ……………………10分

                     又=在[1,4]上為減函數(shù)

                     ∴的最小值為

                     ∴                                                                            ……………………12分

                (文)(1)∵函數(shù)在[0,1]上單調(diào)遞增,在區(qū)間上單調(diào)遞減,

                     ∴x=1時(shí),取得極大值,

                     ∴

                     ∴4-12+2a=0a=4                                                                 ………………………4分

                 (2)A(x0,f(x0))關(guān)于直線x=1的對(duì)稱點(diǎn)B的坐標(biāo)為(2- x0,f(x0

                    

                     =

                     ∴A關(guān)于直線x=1的對(duì)稱點(diǎn)B也在函數(shù)的圖象上            …………………8分

                 (3)函數(shù)的圖象與函數(shù)的圖象恰有3個(gè)交點(diǎn),等價(jià)于方程

                     恰有3個(gè)不等實(shí)根,

                    

                     ∵x=0是其中一個(gè)根,

                     ∴方程有兩個(gè)非零不等實(shí)根

                                                     ……………………12分

              21.解:(理)(1)由已知得:

                            

                     ∵                                                     ①…………………2分

                     ∴                                                                 ②

                     ②―①

                     即

                     又

                     ∴                                                                      ……………………5分

                     ∴{an}成等差數(shù)列,且d=1,又a1=1,∴…………………6分

                 (2)∵

                     ∴

                     ∴                   …………………8分

                     兩式相減

                    

                     ∴                                                          ……………………10分

                     ∴               ……………………12分

                 (文)(1)由已知得:

                    

                     ∴

                     ∵                                                     ①…………………2分

                     ∴                                                                 ②

                     ②―①

                     即

                     又

                     ∴                                                                      ……………………5分

                     ∴{an}成等差數(shù)列,且d=1,又a1=1,∴…………………6分

                 (2)∵

                     ∴

                     ∴                   …………………8分

                     兩式相減

                    

                     ∴                                                          ……………………10分

                     ∴               ……………………12分

               

              22.解:(1)

                     設(shè)M(x,y)是曲線C上任一點(diǎn),因?yàn)镻M⊥x軸,

                     所以點(diǎn)P的坐標(biāo)為(x,3y)                                                   …………………2分

                     點(diǎn)P在橢圓,所以

                     因此曲線C的方程是                                           …………………5分

                 (2)當(dāng)直線l的斜率不存在時(shí),顯然不滿足條件

                     所以設(shè)直線l的方程為與橢圓交于Ax1,y1),Bx2,y2),N點(diǎn)所在直線方

                     程為

                     ,由

                                                             ……………………6分

                     由△=………………8分

                     ∵,所以四邊形OANB為平行四邊形               …………………9分

                     假設(shè)存在矩形OANB,則

                    

                     所以

                     即                                                                   ……………………11分

                     設(shè)N(),由,得

                     ,

                     即N點(diǎn)在直線

                     所以存在四邊形OANB為矩形,直線l的方程為 ……………………14分


              同步練習(xí)冊(cè)答案